PENNSYLVANIA • NEW JERSEY • FLORIDA • ONTARIO

111 ZENWAY BLVD., UNIT 4, VAUGHAN, ONTARIO, L4H 3H9 TEL: 416.675.0160 FAX: 905 851.1722 office@mccrak.com

1271 DENISON ST., UNIT 45, MARKHAM, ONTARIO, L3R 485 TEL: 905.470.0160 FAX: 905.475.6371 denison@mccrak.com

McMASTER INNOVATION PARK - COLABORATORY No. 110A 175 LONGWOOD RD. S., HAMILTON, ONTARIO, L&P OA1 office@mccrak.com

WWW.MCCRAK.COM

DECEMBER 2019

G5168

GEOHYDROLOGY ASSESSMENT 1637 – 1645 BATHURST STREET TORONTO, ONTARIO

DISTRIBUTION:

1 COPY (electronic) STARLIGHT INVESTMENTS

1 COPY McCLYMONT & RAK ENGINEERS, INC.

PREPARED FOR:

Starlight Investments 1400 – 3280 Bloor Street West, Centre Tower Toronto, Ontario M8X 2X3

TABLE OF CONTENTS

1.0	INTRODUCTION
1.1 1.2 1.3 1.4 1.5	SCOPE OF WORK1SITE DESCRIPTION1PROPOSED DEVELOPMENT2PROPERTY OWNERSHIP2REVIEW OF PREVIOUS REPORTS3
2.0	HYDROGEOLOGICAL CONDITIONS
2.1 2.2 2.3 2.4	PHYSICAL SETTING
3.0	SCOPE OF INVESTIGATION
3.1 3.2 3.3 3.4 3.5	OVERVIEW OF SITE INVESTIGATION6MONITORING WELL INSTALLATION6ELEVATION SURVEYING6GROUNDWATER SAMPLING6GROUNDWATER ANALYSIS7
4.0	INVESTIGATION RESULTS
4.1 4.2 4.3 4.4	GEOLOGY 8 GROUNDWATER LEVEL MONITORING 9 GROUNDWATER QUALITY 9 GROUNDWATER DISCHARGE ASSESSMENT 9
5.0	REVIEW AND EVALUATION
5.1 5.1.1 5.2 5.2.1 5.3 5.4 5.5	TEMPORARY DEWATERING ASSESSMENT.10NUMERICAL ANALYSIS11PERMANENT FOUNDATION DRAIN FLOW RATES12NUMERICAL ANALYSIS13MECP PERMIT TO TAKE WATER REQUIREMENT13TORONTO WATER DISCHARGE PERMIT REQUIREMENTS14ENVIRONMENTAL PROTECTION14
6.0	CONCLUSIONS AND RECOMMENDATIONS
7.0	REFERENCES
8.0	STATEMENT OF LIMITATIONS19
9.0	CLOSURE

ltem

FIGURES

Drawing No. 1	Borehole Location Plan
Drawing No. 2	Private Water Drainage System

TABLES

Table 1	Construction Details and Elevation of Monitoring Wells
Table 2	Groundwater Analytical Results – City of Toronto Sewers By-Law
Table 3	Groundwater Monitoring Data
Table 4	Discharge Estimation of Construction Dewatering
Table 5	Discharge Estimation of Permanent Drainage System

APPENDICES

Appendix A	Legal Survey
Appendix B	Proposed Redevelopment Drawings
Appendix C	Borehole Logs
Appendix D	Certificates of Analysis

1.0 INTRODUCTION

Starlight Investments (the Client) intends to redevelop the property located at 1637 – 1645 Bathurst Street, Toronto, Ontario, M5P 3J6, (hereafter referred to as 'the Site'). McClymont & Rak Engineers Inc. (MCR) was retained to conduct a Geohydrology Assessment for the Site to evaluate the requirements for temporary and permanent dewatering for the proposed redevelopment.

1.1 SCOPE OF WORK

The objectives of the Geohydrology Assessment are to determine the following:

- Hydrogeological conditions of the Site, including the groundwater and phreatic surface, subsurface elevations and flow patterns and the interaction with the design and construction of the proposed development.
- Reviewing the available background information for the Site obtained from MCR's files, City of Toronto, and architectural drawings.
- Estimate the potential temporary dewatering flow rates during construction and assessment of potential impacts on the surrounding environment.
- Estimate the long term flow rates from the Private Water Drainage System (PWDS) of the proposed building.
- Assess the permitting requirements for both dewatering and discharge with the Ministry of Environment, Conservation and Parks (MECP) and the City of Toronto – Toronto Water (the City), respectively.
- Summarize the findings in a Geohydrology Assessment Report.

1.2 SITE DESCRIPTION

The subject property is located at the municipal address 1637 - 1645 Bathurst Street, in a predominantly residential area of the City of Toronto, Ontario. The site is rectangular in shape with a total area of approximately 4,161 m².

The Site is bounded by residential buildings to the north, east, and south and Bathurst Street to the west. The Site is occupied by five 3-storey apartment

buildings, a paved entrance from Bathurst Street to the west side of the buildings and a paved driveway along the east side.

The ground surface on the west side of the buildings is landscaped, covered with grass and some trees and bushes. There are fences on the south and east sides, and wire fence on the north side.

The paved surfaces are even, while landscaped parts are made with irregular slopes and flatter areas. Terrain slopes towards the north and east with the maximum difference in borehole elevations of 2.6 m. There is a retaining wall along Bathurst Street extending from the entrance driveway all the way to the south end of the property.

The legal description of the Site is: Lots 4 to 10 Inclusive, Plan M-347, City of Toronto. A Site Survey Plan is enclosed in Appendix A.

1.3 **PROPOSED DEVELOPMENT**

The Site is proposed for residential redevelopment consisting of a four [4] storey building with two [2] levels of below grade parking (Appendix B). It is understood that the finished floor elevation (FFE) at ground will be range from approximately 170.65 to 174.75 meters above sea level (masl). The P2 lower FFE will be at an approximate elevation of 163.34 masl.

Presently, it is assumed that the proposed building can be supported on conventional spread/strip footings. The size of the shoring plan layout was assumed to cover approximately 84 m by 32 m.

A conventional sub-floor Private Water Drainage System (PWDS) with perimeter weeping tile below the P2 Level slab will be required. A soldier pile and lagging wall shoring system will be sufficient for the Site except where adjacent structures exist, where a caisson wall will be utilized.

1.4 **PROPERTY OWNERSHIP**

The Site is commissioned by Starlight Investments, and the owner is represented

by Mr. Evan French, with the following contact information:

Starlight Investments 1400 – 3280 Bloor Street West, Centre Tower Toronto, Ontario M8X 2X3

Mr. Evan French Development Manager E-mail: <u>efrench@starlightinvest.com</u>

1.5 REVIEW OF PREVIOUS REPORTS

The following geo-environmental reports were provided for review prior to initiating the investigation:

• MCR report titled, *Geotechnical Report, Proposed Residential Development, 1637 – 1645 Bathurst Street, Toronto, Ontario,* prepared for Starlight Investments, dated August 2017.

2.0 HYDROGEOLOGICAL CONDITIONS

2.1 PHYSICAL SETTING

The Site is located in the north-central portion of the City of Toronto and is situated in a predominantly residential area. There are no areas of natural significance within 250 m. There are no water bodies or areas of natural significance within 30 m of the Site boundaries. The nearest surface water body is the Don River, at approximately 4.6 km south-east of the Site.

The Site is located at an average geodetic elevation of approximately 170 masl and the topography across the Site is generally flat with a gentle slope towards the south.

The Site is bounded by the following properties/features:

North	Residential Buildings
South	Residential Buildings
East	Residential Buildings
West	Bathurst Street

2.2 TOPOGRAPHY

According to the topographic map, Map 30 M/11, 9th Edition published by Government of Canada; Natural Resources Canada; Earth Sciences Sector; Canada Centre for Mapping and Earth Observation, on July 19, 2013, the ground surface at the Site is relatively flat with the surrounding area sloping gently to the south towards Lake Ontario.

2.3 REGIONAL GEOLOGY AND HYDROGEOLOGY

According to the geological map entitled "Quaternary Geology of Ontario, Southern Sheet" Map 2556, published by the Ontario Ministry of Development and Mines, dated 1991, the overburden in the study area consists of predominantly silt to silty clay matrix, high in matrix carbonate content and clast poor. The groundwater typically tends to flow towards south-east, towards the Don River.

According to Ontario Ministry of Development and Mines, Map No. 2544, "Bedrock Geology of Ontario, Southern Sheet, 1991", the bedrock typically consists of Upper Ordovician shale, limestone, dolostone and siltstone. Groundwater tends to flow towards south-east, towards the Don River.

2.4 LOCAL GEOLOGY AND HYDROGEOLOGY

On a local scale, geological conditions and hydrogeology are similar to the ones at a regional scale. Locally, near surface groundwater flow may be influenced by underground structures (e.g., service trenches, catch basins, and building foundations or surface watercourses). No surface water features are present onsite and there are no Provincially Significant Wetlands in the vicinity of the Site.

3.0 SCOPE OF INVESTIGATION

3.1 OVERVIEW OF SITE INVESTIGATION

- The field investigation included the advancement of three boreholes (BH1 to BH3) by MCR from June to August 2017.
- The boreholes were advanced to depths ranging from 12.45 to 12.65 m. Boreholes 1 and 2 were equipped with monitoring wells for long term groundwater monitoring.
- The borehole locations are shown in Drawing No. 1 and the borehole logs are presented in Appendix C.
- Groundwater levels were recorded from all available monitoring wells over various dates and the data is presented in Table 1.
- Groundwater samples were collected from BH1 for chemical analysis of the City of Toronto Sewers By-Law criteria.

3.2 MONITORING WELL INSTALLATION

All monitoring wells by MCR were installed with a 50 mm diameter schedule 40 PVC pipe and a 3.05 m long slotted well screen. Well screens were surrounded by a silica sand pack to at least 0.6 m above the top of screen with a bentonite seal extending from above the sand pack to within 0.5 m of the ground surface. All monitoring wells were completed with a flush mounted cover at ground surface. Monitoring well installation was done in accordance with the *Ontario Water Resources Act*, Sections 35 to 50.

3.3 ELEVATION SURVEYING

The elevations for all MCR boreholes were surveyed and referenced to a metric and geodetic system. Borehole elevations are shown on the borehole logs in Appendix C.

3.4 GROUNDWATER SAMPLING

All groundwater sampling activities were conducted in accordance with Ontario

Regulation (O.Reg.)153/04, as amended to O.Reg.511/09, July 2011. All monitoring wells were developed prior to sampling activities using a Waterra Hydrolift II (HL-1217) inertial lift pump by purging at least three well volumes or until the monitoring well was purged dry. Groundwater samples were obtained at least 24 hours' post-development under static conditions.

3.5 GROUNDWATER ANALYSIS

All groundwater samples were submitted to ALS Laboratory Group (ALS) of Richmond Hill, Ontario, certified by the Canadian Association for Laboratory Accreditation (CALA), for chemical analysis. The Certificates of Analysis received are included in Appendix D. The contact information for the laboratory used is included below.

ALS Laboratory Group

95 West Beaver Creek Road Richmond Hill, ON L4B 1H2

Groundwater samples were submitted for bulk chemical analysis for the criteria provided in the *Toronto Municipal Code, Chapter 681, Sewers By-law.* The results of chemical analysis were compared to the criteria provided in *Table 1 – Limits for Sanitary and Combined Sewers Discharge and Table 2 – Limits for Storm Sewer Discharge.* These guidelines establish the maximum allowable concentrations of specific analytical parameters for water discharged into either the municipal sanitary and/or storm sewer system respectively.

4.0 INVESTIGATION RESULTS

4.1 GEOLOGY

Ground surface elevations at boreholes ranged from 171.95 (BH 2) to 174.55 masl (BH 3). Based on the investigation, the geologic formations beneath the Site are illustrated in the borehole logs (Appendix C) and include the following (from surface to depth):

Asphalt/Granular Fill: An asphalt layer, about 75 mm in thickness was present at the ground surface of borehole 1.

Miscellaneous Fill: Fill, consisting of silty sand and clayey silt with some sand and gravel, was detected below the asphalt layer in borehole 1 and at the surface of boreholes 2 and 3. The fill extended to depths ranging from 0.75 to 1.50 m. The brown, moist, stiff/compact, fill also contained traces of organics, rootlets and construction debris such as brick pieces.

Due to the nature of fill and for the purpose of offsite disposal, the type/quality and extent of the existing fill should be explored by further test pit investigation.

Sandy Silt Till: Compact to very dense sandy silt to sandy silt till deposit was encountered below the fill and extended to the maximum depth of investigation in all boreholes. The brown to grey, moist to wet deposit contained layers of hard, moist to wet clayey silt to clayey silt till. They clayey silt to clayey silt till was very dense and contained wet silty sand and trances of clay and gravel.

It should be noted that the till/sand soil is an unsorted sediment; therefore, boulders and cobbles are anticipated.

Groundwater: Upon competition of drilling, groundwater was observed at depths of 11.30 and 11.00 m in boreholes 2 and 3, respectively. Borehole 1 remained dry.

On July 21, 2017, groundwater was measured at a depth of 6.23 m in borehole

1. The results are summarized on the Record of Borehole Sheets in Appendix C and Table 1.

4.2 GROUNDWATER LEVEL MONITORING

Groundwater levels were monitored by MCR in BH1 to BH2 during 2017. All groundwater measurement data is presented in the enclosed Table 1. It should be noted that groundwater levels are subject to seasonal fluctuations. All groundwater levels were manually measured using an electric water level meter and with respect to geodetic borehole elevations. The monitoring wells must be decommissioned, prior to construction, in accordance with Regulation 903 by a qualified contractor.

The interpreted groundwater flow direction is based on the 2017 round of water table elevation measurements, since this event provided water table elevations from the majority of the monitoring wells. Confidence in the groundwater flow direction could be increased with additional rounds of water table elevation measurements. The interpreted local direction of hydraulic movement across the Site is inferred to be in a south-eastern direction, towards the Don River.

4.3 **GROUNDWATER QUALITY**

Groundwater samples collected in August 2017 from BH1 were analyzed for the City of Toronto Sewers By-Law criteria. The results of chemical analysis (Table 2) indicate that the sample complies with both the *Table 1 Limits for Sanitary & Combined Sewers Discharge* and the *Table 2 Limits for Storm Sewer Discharge* for all parameters analyzed.

4.4 GROUNDWATER DISCHARGE ASSESSMENT

Presently, the groundwater sample collected onsite can be discharged to the City sanitary and combined sewer system or storm sewer system with no additional filtration or treatment.

5.0 REVIEW AND EVALUATION

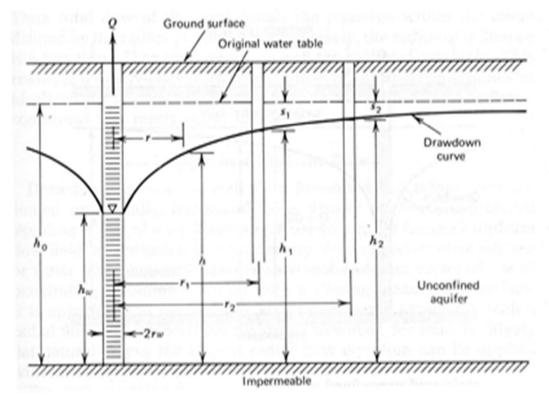
5.1 TEMPORARY DEWATERING ASSESSMENT

The excavation for the proposed two underground parking structure will extend into competent native silty clay/sandy silt till. In order to protect the sides/bottom of the excavation from being disturbed by excess groundwater pressure, i.e. to prevent quick sand/dilating silt conditions, the groundwater table must be lowered at least 2.0 m below the bottom of the footing excavation. Positive dewatering such as eductors will be required for the proposed excavation. Onsite soils might be subject to localized piping during dewatering. Creation of piping channels may result in substantial increase in the volume of both temporary dewatering and permanent drainage.

For the proposed two underground levels, groundwater is required to be drawn down a minimum of 2 m below the underside of the footing. The assumed footing elevation is 161.84 masl, therefore, groundwater will need to be lowered to an elevation of approximately 159.84 masl. The average ground water level recorded in the monitoring wells is conservatively taken at an elevation of 167.27 masl (Table 3), representing an approximate 7.40 m hydrostatic head requiring dewatering. The report has not conducted dewatering induced settlement calculations.

Theoretically, the groundwater drawdown for a single well pumping can be described as:

$$Q = -2\pi r K h \frac{dh}{dr}$$
(1)


And further we have:

$$h^{2} = -\frac{Q}{\pi K} \ln(r / r_{w}) + h_{w}^{2}$$
⁽²⁾

Where:

h [*m*] is the height of the water table above an impervious base Q [*m*³/day] is the rate of pumping discharge

K [*m*/day] is hydraulic conductivity *R* [*m*] is the radius from the centre of well location *r_w*[*m*] is the radius of pumping well (see Schematic A below).

Schematic A: Radial flow to an unconfined aquifer (Todd 1980)

5.1.1 Numerical Analysis

The abovementioned Site parameters were used to calculate the estimated steady state discharge rate for temporary construction dewatering. Groundwater monitoring data is presented in Table 3. The calculations for temporary dewatering rates are shown in Table 4.

From the observed soil types and based on soil sample descriptions (*Todd, 1980; Mays, 2001; and Craig, 2004*), the average hydraulic conductivity (K) of the aquifer was estimated at 0.5 m/day. The estimated steady state discharge rate for temporary construction dewatering was calculated to be approximately 192 m³/day (35 USG/min) with a safety factor of 1.50.

The initial drawdown pumping rate would be higher to relieve the stored

groundwater pressure (prior to the start of construction). Considering the soils onsite being mainly a mixture of clayey silt/sandy silt, the average specific yield is estimated as 10%. The total yield from the groundwater stored within the soil pore would be about 2,000 m³.

The additional discharge rate to remove the groundwater store in the pore spaces during initial drawdown could range form 50 m³/day for a 40-day drawdown period to 33 m³/day for a 60-day drawdown period. A factor of two should be applied to account for unforeseen conditions, including potential impact of wet weather conditions and fluctuations in the groundwater table.

Additional pumping may be required to remove surface water from the Site. Assuming a rainfall event of 25 mm over a 24 hour period, about 67 m³/day of water may need to be removed from the Site following rain events.

	Typical	Maximum	Units
Groundwater	192	292	m³/day
Precipitation	0	67	m³/day
Total	192	359	m³/day

Accordingly, the following pumping rates are required:

5.2 PERMANENT FOUNDATION DRAIN FLOW RATES

For the proposed redevelopment, it is understood that the ground floor's FFE will range from approximately 170.65 to 174.75 masl. The P2 lowest slab's finished floor will be at an approximate elevation of 163.34 masl.

A conventional sub-floor Private Water Drainage System (PWDS) with perimeter/under floor weeping tile is proposed below the P2 level slab. The invert of the PWDS is assumed to be at an approximate elevation of 162.84 masl.

The proposed PWDS is shown on Drawing No. 2. The slotted pipes should slope to a sump at a minimum 1% slope. Perimeter drainage pipes, with a positive gravity outlet, should be solid PVC with a minimum of 0.5% slope. In addition, silt traps must be provided at convenient/accessible locations.

5.2.1 Numerical Analysis

The abovementioned Site parameters were used to calculate the estimated steady state discharge rate for the PWDS. Groundwater monitoring data is presented in Table 3. The calculations for permanent drainage flow rates are shown in Table 5.

From the observed soil types and based on soil sample descriptions (*Todd, 1980; Mays, 2001; and Craig, 2004*), the average hydraulic conductivity (K) of the aquifer was estimated at 0.5 m/day. The estimated steady state discharge rate for the PWDS was calculated at approximately 91 m³/day (17 USG/min).

5.3 MECP PERMIT TO TAKE WATER REQUIREMENT

The Permit to Take Water (PTTW) requirements for construction site dewatering have been updated to the current O.Reg.63/16 amendment to Environmental Protection Act. In accordance with the updated regulation, construction site dewatering will require a complete PTTW application when water takings greater than 400,000 L/day are predicted. Groundwater taking between 50,000 L/day and 400,000 L/day will require a limited PTTW via an online application process through the Environmental Activity and Sector Registry (EASR). Groundwater taking from a proposed building structure by means of a PWDS will require a PTTW when water taking is greater than 50,000 L/day. The complete permit application process for PTTW takes approximately twelve weeks to review and is required prior to applying for the discharge permits.

The maximum anticipated temporary dewatering discharge rate was calculated at approximately 359 m³/day. Therefore, a limited PTTW application will be required to be applied for with the MECP.

The flow rate from the PWDS was calculated at approximately 91 m³/day. Therefore, a complete PTTW application for the PWDS will be required for the proposed building.

In accordance with the current Ontario Regulation 387/04 for Water Taking, every person to whom a permit has been issued under Section 34 of the Act

shall collect and record data on the volume of water taken daily. The data collected shall be measured by a flow meter or calculated using a method acceptable to a Director.

5.4 TORONTO WATER DISCHARGE PERMIT REQUIREMENTS

The City of Toronto – Toronto Water requires that any private water to be discharged into the City sewer system must have a permit or agreement in place in order to discharge; this applies to all water not purchased from the City water supply. For temporary dewatering during the construction phase, this includes all groundwater and storm water that is collected or encountered during site excavation. For the PWDS, this includes all groundwater that is constantly pumped as a result of the drainage system elevation located below the groundwater table elevation or through storm water infiltration.

The groundwater quality sample collected in 2017 indicated that the water onsite could be discharged into the City sanitary and combined sewer system or storm sewer system without additional filtration/treatment required. A short-term temporary discharge permit must be applied for construction dewatering with Toronto Water.

A long-term permanent discharge permit must be applied for the proposed PWDS since the drainage system is located below the long-term groundwater elevation. The permanent discharge permit will involve coordination with the mechanical and site servicing consultant to provide calculations and drawing specifications for the ultimate discharge location and the sampling port required by Toronto Water.

5.5 Environmental Protection

The Site is located within the Don River drainage basin and the lake is approximately 4.6 km south-east of the Site. There are no surface water features and no areas of natural significance or provincially significant wetlands in the vicinity of the Site. The Site is located in the City of Toronto urban environment which obtains its municipal water supply from Lake Ontario. Therefore, there are no potable groundwater users within the vicinity of the Site.

The proposed redevelopment plan will remove all the overburden to a depth of approximately 9 - 13 mbgs, from the interior Site area shown on the Site plan. Temporary groundwater dewatering will lower the groundwater table to below the underground parking foundations levels. The extracted water will be discharged into the sanitary sewer or into the storm sewer. Updated groundwater monitoring will be conducted by the dewatering contractor prior to and during construction activities to ensure that no additional adverse groundwater impacts are identified throughout the project's construction.

6.0 CONCLUSIONS AND RECOMMENDATIONS

McClymont & Rak Engineers Inc. was retained to conduct a Geohydrology Assessment for the Site in relation to the proposed redevelopment. The Site is occupied by five 3-storey apartment buildings, a paved entrance from Bathurst Street to the west side of the buildings and a paved driveway along the east side.

The Site is proposed for residential redevelopment consisting of a four [4] storey building with two [2] levels of below grade parking (Appendix B). It is understood that the finished floor elevation (FFE) at ground will be range from approximately 170.65 to 174.75 meters above sea level (masl). The P2 lower FFE will be at an approximate elevation of 163.34 masl.

Presently, it is assumed that the proposed building can be supported on conventional spread/strip footings. The size of the shoring plan layout was assumed to cover approximately 84 m by 32 m.

A conventional sub-floor Private Water Drainage System (PWDS) with perimeter weeping tile below the P2 Level slab will be required. A soldier pile and lagging wall shoring system will be sufficient for the Site except where adjacent structures exist, where a caisson wall will be utilized.

The excavation for the proposed two underground parking structure will extend into competent native silty clay/sandy silt till. In order to protect the sides/bottom of the excavation from being disturbed by excess groundwater pressure, i.e. to prevent quick sand/dilating silt conditions, the groundwater table must be lowered at least 2.0 m below the bottom of the footing excavation. Positive dewatering such as eductors will be required for the proposed excavation. Onsite soils might be subject to localized piping during dewatering. Creation of piping channels may result in substantial increase in the volume of both temporary dewatering and permanent drainage.

For the proposed two underground levels, groundwater is required to be drawn down a minimum of 2 m below the underside of the footing. The assumed footing elevation is 161.84 masl, therefore, groundwater will need to be lowered to an elevation of approximately 159.84 masl. The average ground water level recorded in the

monitoring wells is conservatively taken at an elevation of 167.27 masl (Table 3), representing an approximate 7.40 m hydrostatic head requiring dewatering. The report has not conducted dewatering induced settlement calculations.

The anticipated discharge rate for temporary construction dewatering was calculated between $192 - 359 \text{ m}^3/\text{day}$ (35 - 66 USG/min). Therefore, based on the amended O.Reg. 63/16 to the Environmental Protection Act, a limited PTTW application through the EASR will be required from the MECP and a temporary discharge permit will be required from the Toronto Water.

The discharge rate for the PWDS was calculated at 91 m³/day (17 USG/min). A complete PTTW will be required from the MECP for the PWDS. A permanent drainage discharge permit will be required from Toronto Water since the drainage system will be installed below the long-term groundwater elevation.

Presently, the groundwater sample collected onsite can be discharged to the City sanitary and combined sewer system or storm sewer system with no additional filtration or treatment.

The application process, where a PTTW is required, can take at least three months for a review by the MECP and is required to be approved prior to applying for discharge permits. It is recommended that applications to Toronto Water for discharge permits be applied for at least three months prior to the required start dates. Applications are to be supported by drawings and calculations provided by the mechanical and the site servicing consultant and coordination is required amongst all disciplines. The information provided in this report can be relied upon by Toronto Water – Environmental Monitoring & Protection Unit (TW-EM&P) regarding the short and long term Sanitary Discharge Agreement applications for the Site.

7.0 REFERENCES

- 1. Ontario Ministry of the Environment. *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act.* April15, 2011.
- 2. Ministry of Northern Development and Mines. *Quaternary Geology of Toronto and Southern Ontario Southern, Sheet Map 2504,* 1980.
- 3. Ministry of Northern Development and Mines. *Bedrock Geology of Ontario-Southern Sheet,* 1991.
- 4. D.K. Todd, *Groundwater Hydrology*, 2nd Edition, John Wiley & Sons, New York, 1980.
- 5. L.W. Mays, *Water Resources Engineering*, 1st Edition, John Wiley & Sons, New York, 2001.
- 6. MCR report titled, *Geotechnical Report, Proposed Residential Development,* 1637 – 1645 Bathurst Street, Toronto, Ontario, prepared for Starlight Investments, dated August 2017.

8.0 STATEMENT OF LIMITATIONS

McClymont & Rak Engineers, Inc. (MCR) conducted the work associated with this report in accordance with the scope of services, time and budget limitations imposed for this work. The work has been conducted according to reasonable and generally accepted local standards for an environmental consultant at the time of the work. No other warranty or representation, expressed or implied, is included or intended in this report.

The work was designed to provide an overall assessment of the environmental conditions at the Site. The conclusions presented in this report are based on the information obtained during the investigation. The work is intended to reduce the client's risk with respect to environmental impairment. No work can completely eliminate the possibility of further environmental impairment on the Site.

It should be noted that subsurface conditions might vary at locations and depths other than those locations where borings, surveys or explorations were made by MCR. Other contaminants, not tested for in this work, may also potentially be present on the Site. Even with exhaustive investigation, it is not possible to warranty the Site will be free of contaminants. Should conditions, not observed during the work, become apparent, MCR should be immediately notified to assess the situation and conduct additional work, where required. The findings of this report are based on conditions as they were observed at the time of the work.

No assurance is made regarding changes in conditions subsequent to the time of the work. Remediation cost estimates is based on the available information. The estimated costs for remediation only represent the costs for the clean-up of known contaminants that have been identified during the work. Additional costs may be incurred as a result of other contaminants or areas of contamination identified by subsequent work.

Regulatory statutes are subject to interpretation. These statutes and their interpretation may change over time, thus these issues should be reviewed with appropriate legal counsel.

MCR relied on information provided by others in this report. MCR cannot guarantee the accuracy, completeness and reliability of the information provided by others, although MCR staff attempted to seek clarification on information provided and verifies authenticity, where practical.

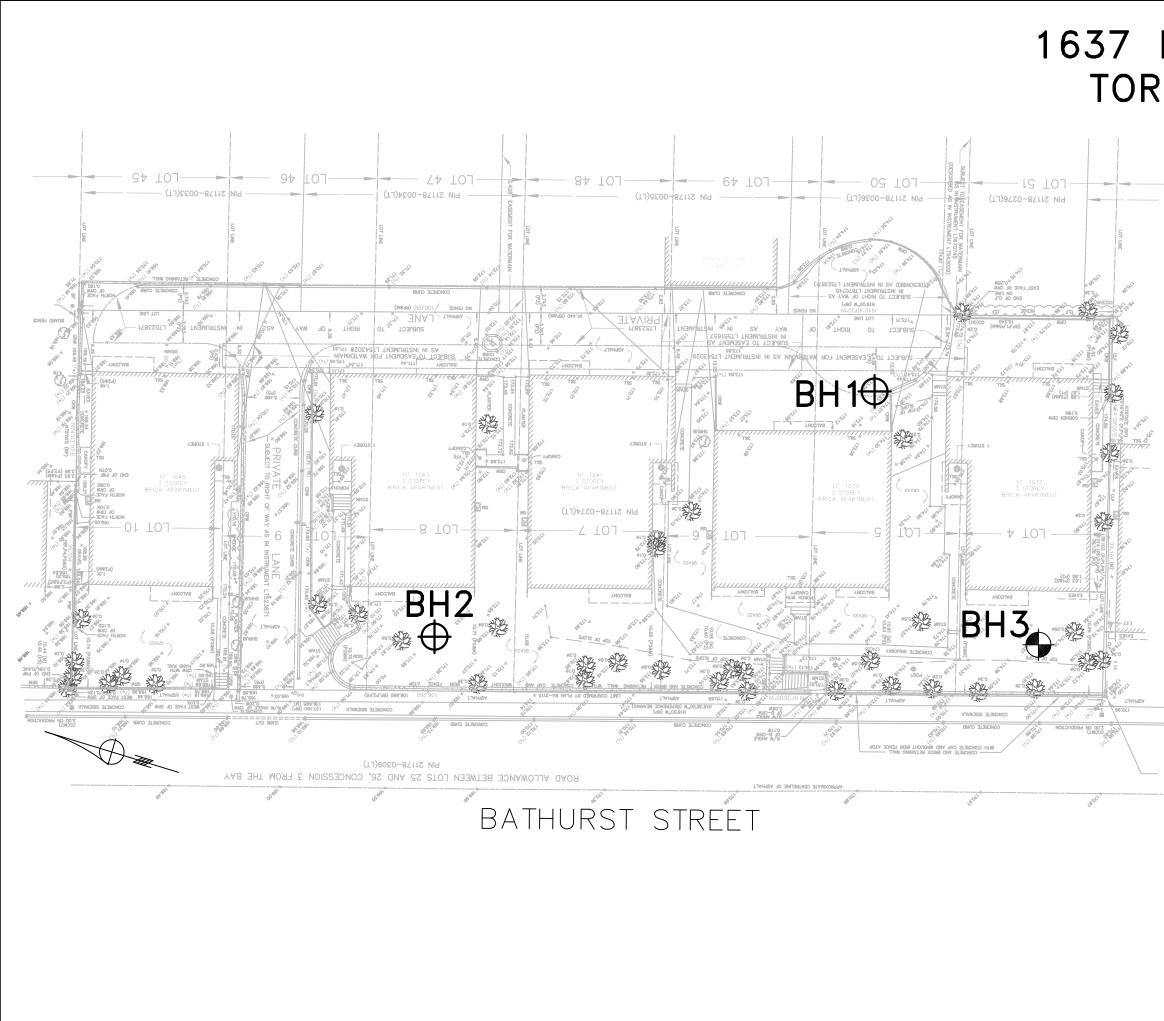
The report and its attachments were prepared for and made available for the sole use of the client. MCR will not be responsible for any use or interpretation of the information contained in this report by any other party without the prior expressed written consent of MCR.

9.0 CLOSURE

In accordance with your request and authorization, McClymont and Rak Engineers Inc. completed this Geohydrology Assessment Report. This report presented the methodology, findings and conclusions of the investigation. The Statement of Limitations for all work performed as part of this investigation is included.

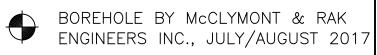
We trust that the information provided in this report is sufficient for your present requirements. Should you have any further questions, please do not hesitate to contact our office. Thank you for retaining McClymont & Rak Engineers, Inc. for this project.

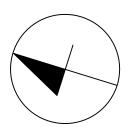
Respectfully, McClymont & Rak Engineers Inc.


Prepared By: Richard Sukhu, B.Eng.

Reviewed By: Lad Rak, P.Eng., M.Eng., QP_{ESA}

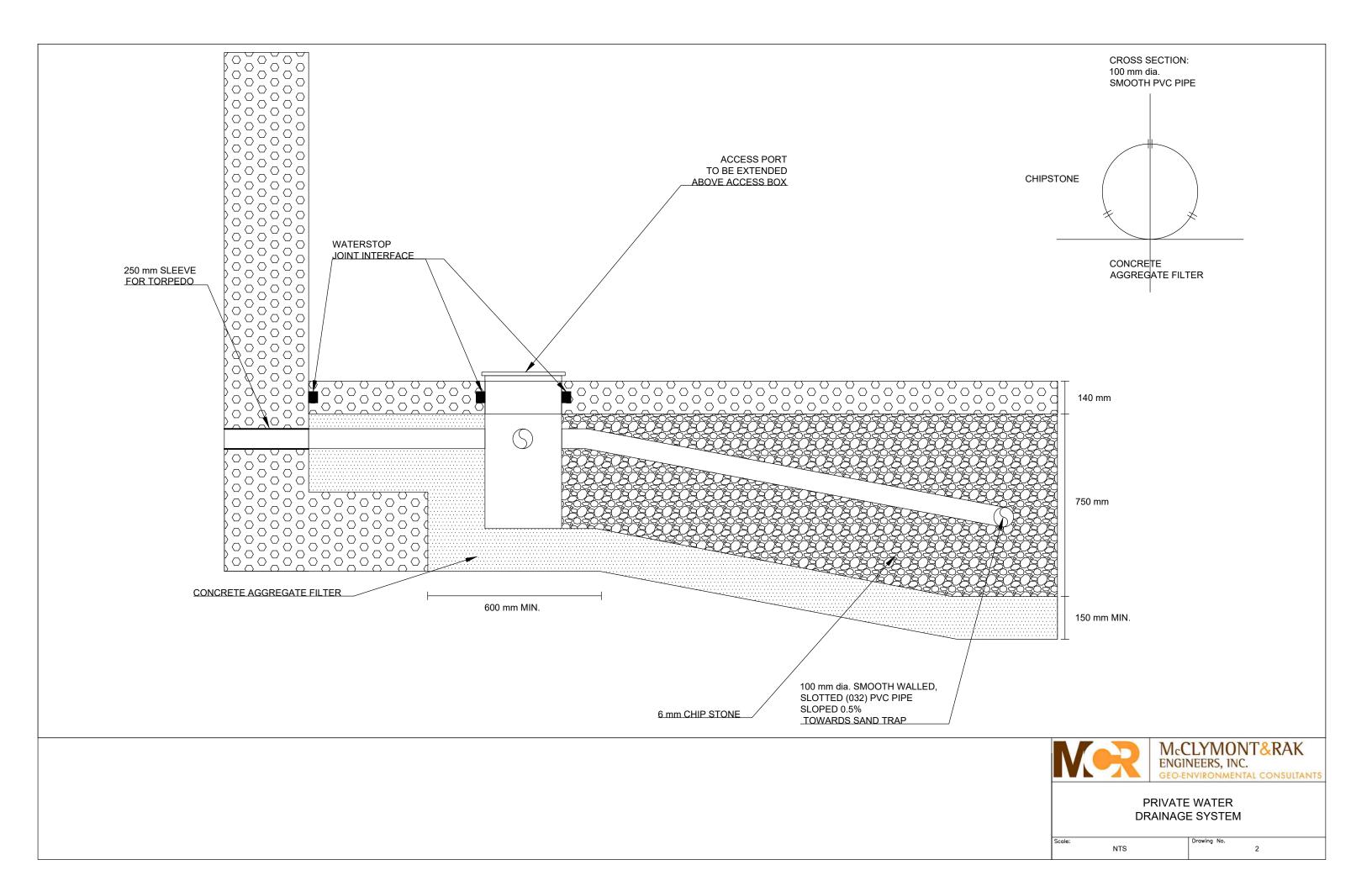
Date of Issue: December 5, 2019


FIGURES


1637 BATHURST STREET TORONTO, ONTARIO

Legend

 \bigoplus


GROUNDWATER MONITORING WELL BY McCLYMONT & RAK ENGINEERS INC., JULY/AUGUST 2017

BOREHOLE LOCATION PLAN

Scale	N/A	Project No. G5168
Date	AUGUST 2017	Drawing No. 1

TABLES

TABLE 1

CONSTRUCTION DETAILS AND ELEVATION OF MONITORING WELLS

MONITORING WELL ID	GROUND SURFACE ELEVATION (masl)	WATER LEVEL	GROUNDWATER ELEVATION (masl)	DATE OF MEASUREMENT (mm/dd/yyyy)	DEPTH OF WELL (mbgs)	DEPTH OF BENTONITE (mbgs)	LENGTH OF SCREEN (m)	INSIDE DIAMETER OF PIPE (mm)	TOP OF MONITORING WELL
BH 1	173.50	DRY	-	7/6/2017	12.20	8.50	3.05	50	FLUSH MOUNT
БПТ	175.50	6.23	167.27	7/21/2017	12.20	0.50	5.05	50	TEOSITIMOONT
BH 2	171.95	11.28	160.67	8/14/2017	12.20	8.50	3.05	50	FLUSH MOUNT
Min	171.95	6.23	160.67	-	12.20	-	-	-	-
Мах	173.50	11.28	167.27	-	12.20	-	-	-	-
Average	172.73	8.76	163.97	-	12.20	-	-	-	-

NOTE:

mbgs - meters below ground surface

masl - meters above sea level

N/A - Not Applicable

NF - Not Found

McCLYMONT AND RAK ENGINEERS INC. <u>GEO-ENVIRONMENTAL CONSULTANTS</u>

TABLE 2

GROUNDWATER ANALYTICAL RESULTS - CITY OF TORONTO SEWERS BY-LAW DISCHARGE CRITERIA MCR JOB#: GE5168

SITE ADDRESS: 1637 - 1645 Bathurst Street, Toronto, ON

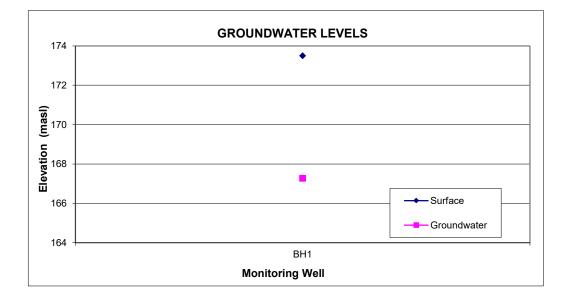
PARAMETER	UNITS	LIMITS FOR STORM	LIMITS FOR SANITARY & COMBINED SEWERS	BH 1
	UNITS	SEWER DISCHARGE	DISCHARGE	28-Aug-17
H	pH Units	6.0 - 9.5	6.0 - 11.5	7.95
Total Suspended Solids	mg/L	15	350	8.8
- Fluoride (F-)	mg/L	-	10	<0.20
Total Kjeldahl Nitrogen (TKN)	mg/L	-	100	<0.15
Total Phosphorus (P)	mg/L	0.4	10	0.0211
Fotal Cyanide (CN)	mg/L	0.02	2	<0.0020
Escherichia Coli	CFU/100mL	200	-	0
Fotal Aluminum (AI)	mg/L	-	50	0.144
Fotal Antimony (Sb)	mg/L	-	5	0.00028
Fotal Arsenic (As)	mg/L	0.02	1	0.00246
Total Cadmium (Cd)	mg/L	0.008	0.7	<0.000010
Fotal Chromium (Cr)	mg/L	0.08	4	0.00077
Fotal Cobalt (Co)	mg/L	-	5	<0.00010
Total Copper (Cu)	mg/L	0.04	2	< 0.0010
Fotal Lead (Pb)	mg/L	0.12	1	0.00021
Fotal Manganese (Mn)	mg/L	0.05	5	0.0167
Fotal Mercury (Hg)	mg/L	0.0004	0.01	<0.000010
Fotal Molybdenum (Mo)	mg/L	-	5	0.00433
Fotal Nickel (Ni)	mg/L	0.08	2	0.00058
Fotal Selenium (Se)	mg/L	0.02	1	0.000173
Fotal Silver (Ag)	mg/L	0.12	5	<0.000050
Total Tin (Sn)	mg/L	-	5	0.00087
Fotal Titanium (Ti)	mg/L	-	5	0.00227
Fotal Zinc (Zn)	mg/L	0.04	2	0.0104
Chromium (VI)	mg/L	0.04	2	<0.0010
Biological Oxygen Demand	mg/L	15	300	<2.0
Fotal Oil & Grease (Animal/Vegetable)	mg/L	-	150	<2.0
Fotal Oil & Grease Mineral/Synthetic	mg/L	-	15	<1.0
Phenols-4AAP	mg/L	0.008	1	0.0045
Benzene	µg/L	2	10	<0.50
Chloroform	μg/L μg/L	2	40	<1.0
1,2-Dichlorobenzene	μg/L μg/L	5.6	50	<0.50
1,4-Dichlorobenzene		6.8	80	<0.50
cis-1,2-Dichloroethylene	µg/L	5.6	4000	<0.50
Dichloromethane (Methylene Chloride)	µg/L	5.2	2000	<2.0
rans-1,3-Dichloropropene	µg/L	5.6	140	<0.50
Ethylbenzene	µg/L	2	140	<0.50
I,1,2,2-Tetrachloroethane	µg/L	17	1400	<0.50
Fetrachloroethylene	µg/L	4.4	1400	<0.50
	µg/L	2	16	
Foluene Frichloroethylene	µg/L	7.6	400	<0.50
(vlene (Total)	µg/L	4.4	1400	<1.1
fotal PAHs (18 PAHs)	µg/L	2	5	<1.7
Bis(2-ethylhexyl)phthalate	µg/L	8.8	12	<2.0
3,3'-Dichlorobenzidine	µg/L	0.8	2	<0.40
3,3 -Dichlorobenzialne Di-n-butylphthalate	µg/L	15	80	<0.40
	µg/L			
Pentachlorophenol Total PCBs	µg/L	2	5	<0.50
	µg/L	0.4	20	<0.040 <1.0
Nonylphenol	µg/L			

BOLD E

Exceeds Criteria - Table 1 Sanitary and Combined Sewer

D Non-Detect Exceeds Criteria - Table 1 Sanitary and Combined Sewer

BOLD Exceeds Criteria - Table 2 Storm Sewer Criteria


BOLD Non-Detect Exceeds Criteria - Table 2 Storm Sewer Criteria

Project:	Proposed Residential Development
Location:	1637 - 1645 Bathurst Street, Toronto, ON
Date:	December-19
Project #:	G5168

TABLE 3 GROUNDWATER MONITORING DATA

Borehole	Surface	Wate	r Level	Monitoring Date	
Number	Elevation	Depth	Elevation	-	NOTES
	(masl)	(mbgs)	(masl)	(mm/dd/yyy)	NOTES
BH1	173.50	6.23	167.27	7/21/2017	

Average	173.50	6.23	167.27
Max			167.27

Project: **Proposed Residential Development** 1637 - 1645 Bathurst Street, Toronto, ON Location: Date: December-19 Project #: G5168

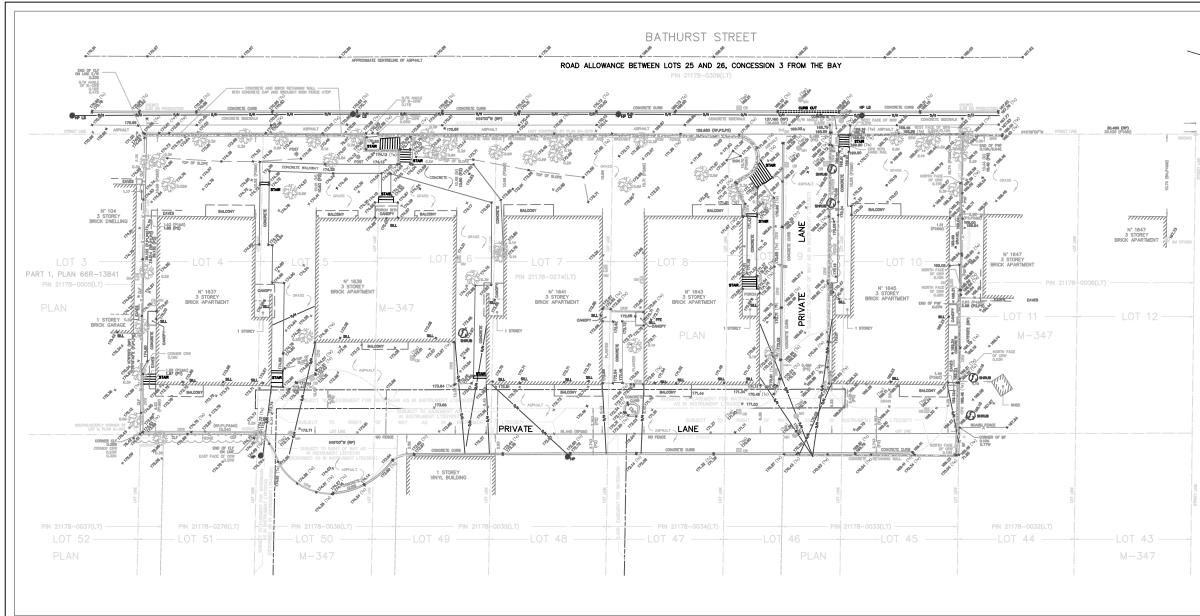
TABLE 4 DISCHARGE ESTIMATION OF CONSTRUCTION DEWATERING

Site Parameters		Units
Initial Water Level before Dewatering	167.27	(m)
Lowest Water Level during Construction Dewatering	159.84	(m)
Length of Site X	84.00	(m)
Width of Site W	32.00	(m)
Equivalent Radius r _e	29.25	(m)
Hydraulic Conductivity of Aquifer (k)	0.50	(m/day)
Aquifer Bottom Elevation	157.84	(m)
Applied Radius of Influence (Ro)	53.62	(m)
Height btw Initial Water Level and Aquifer Bottom (H)	9.43	(m)
Height btw Lowest Water Level and Aquifer Bottom (h _{w)}	2.00	(m)
Radius of Influence (R)	82.87	(m)
Factor of Safety (FS)	1.50	

$$Q = \frac{\pi k (H^2 - h_w^2)}{Ln(R/r)}$$

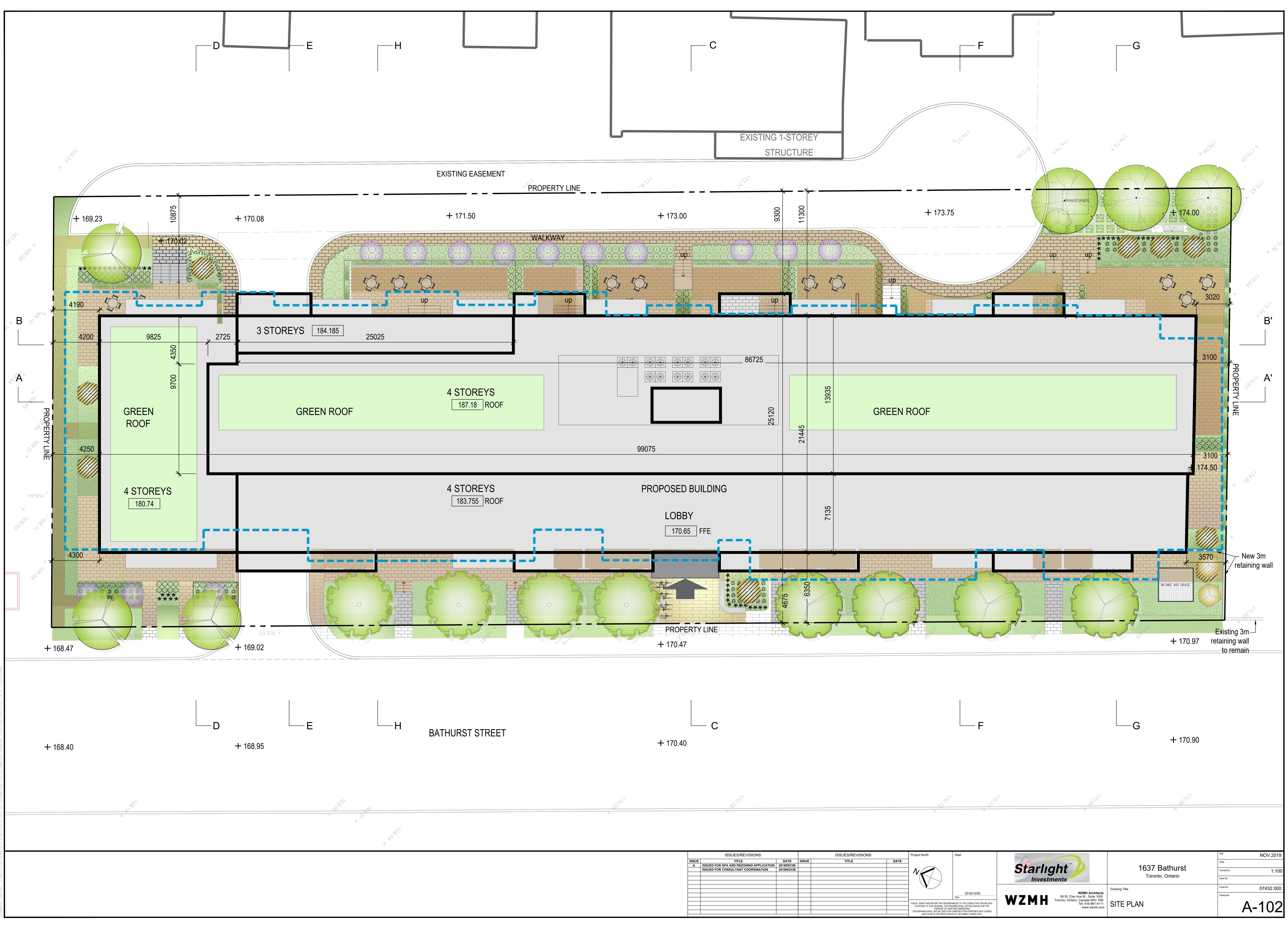
Estimated steady-state discharge of dewatering	192.15 (m ³ /day)		
	35 (USG/min)		

Project: **Proposed Residential Development** 1637 - 1645 Bathurst Street, Toronto, ON Location: Date: December-19 Project #: G5168

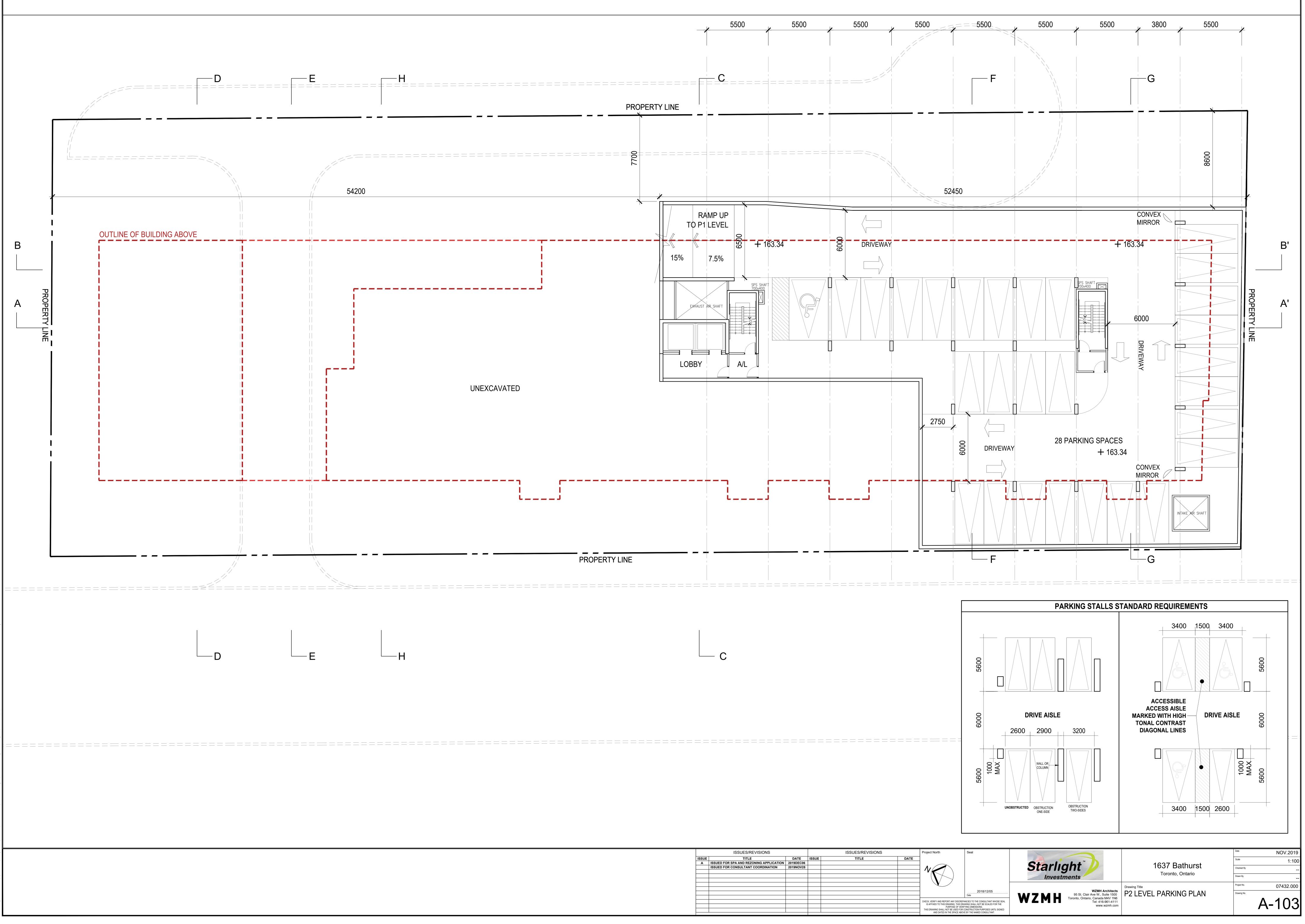

TABLE 5 DISCHARGE ESTIMATION OF PERMANENT DRAINAGE SYSTEM

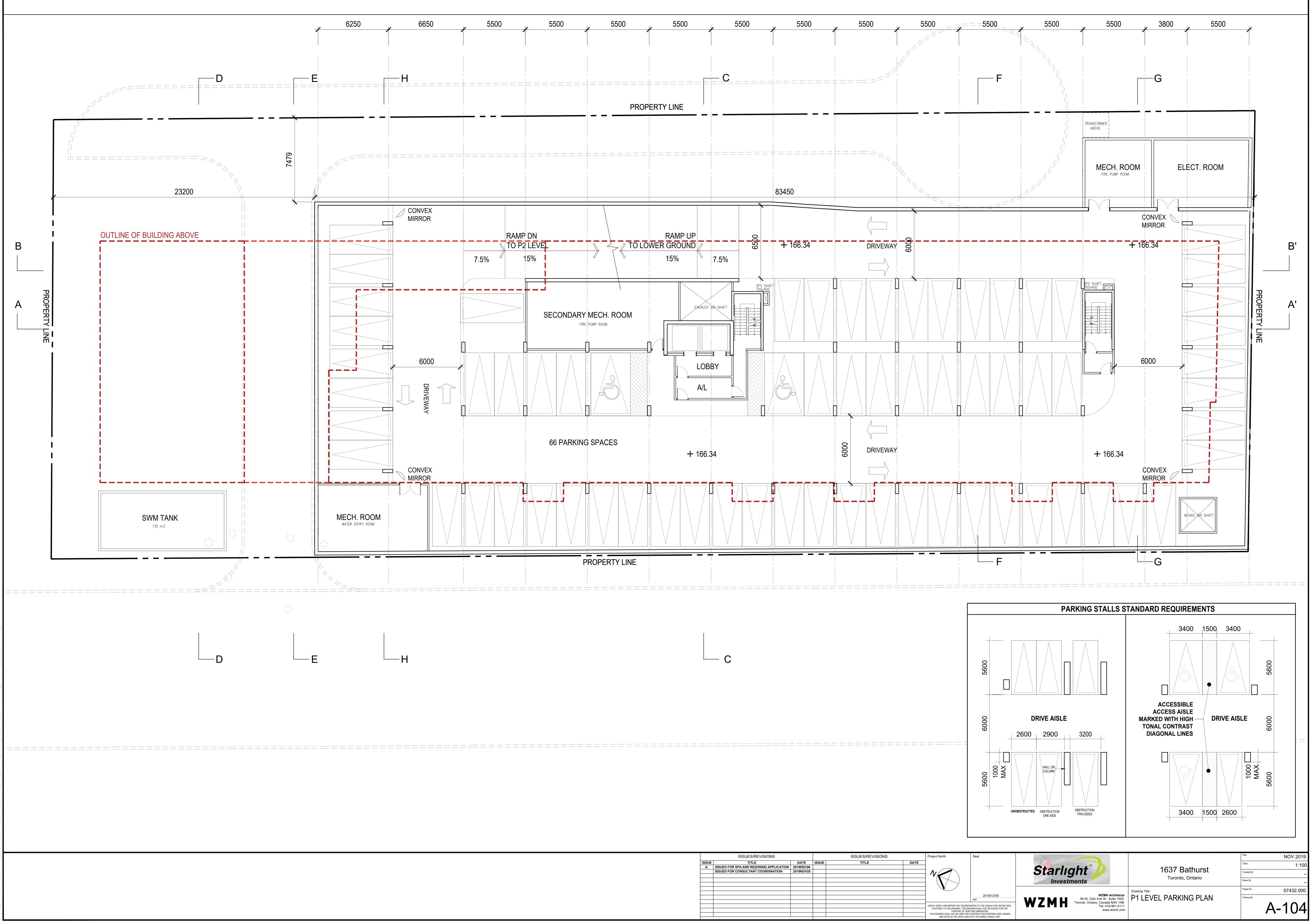
Site Parameters		Units
Initial Water Level before Dewatering	167.27	(m)
Lowest Water Level under PDS conditions	162.84	(m)
Length of Site X	84.00	(m)
Width of Site W	32.00	(m)
Equivalent Radius r _e	29.25	(m)
Hydraulic Conductivity of Aquifer (k)	0.50	(m/day)
Aquifer Bottom Elevation	161.84	(m)
Applied Radius of Influence (Ro)	31.97	(m)
Height btw Initial Water Level and Aquifer Bottom (H)	5.43	(m)
Height btw Lowest Water Level and Aquifer Bottom (h _{w)}	1.00	(m)
Radius of Influence (R)	61.22	(m)
Factor of Safety (FS)	1.50	

$$Q = \frac{\pi k (H^2 - h_w^2)}{Ln(R/r)}$$

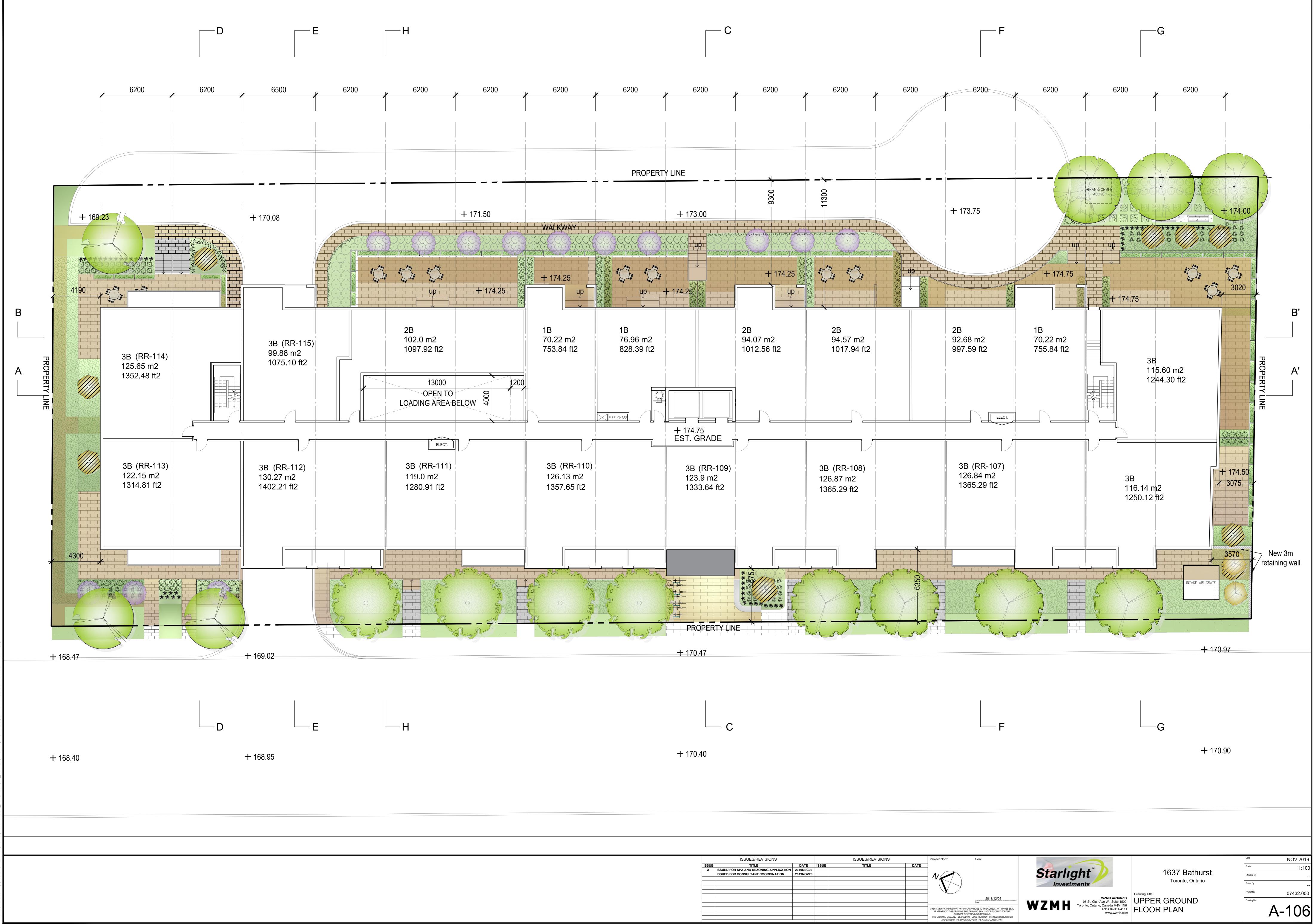

Estimated steady-state discharge of dewatering	90.87 (m ³ /day)		
	17 (USG/min)		

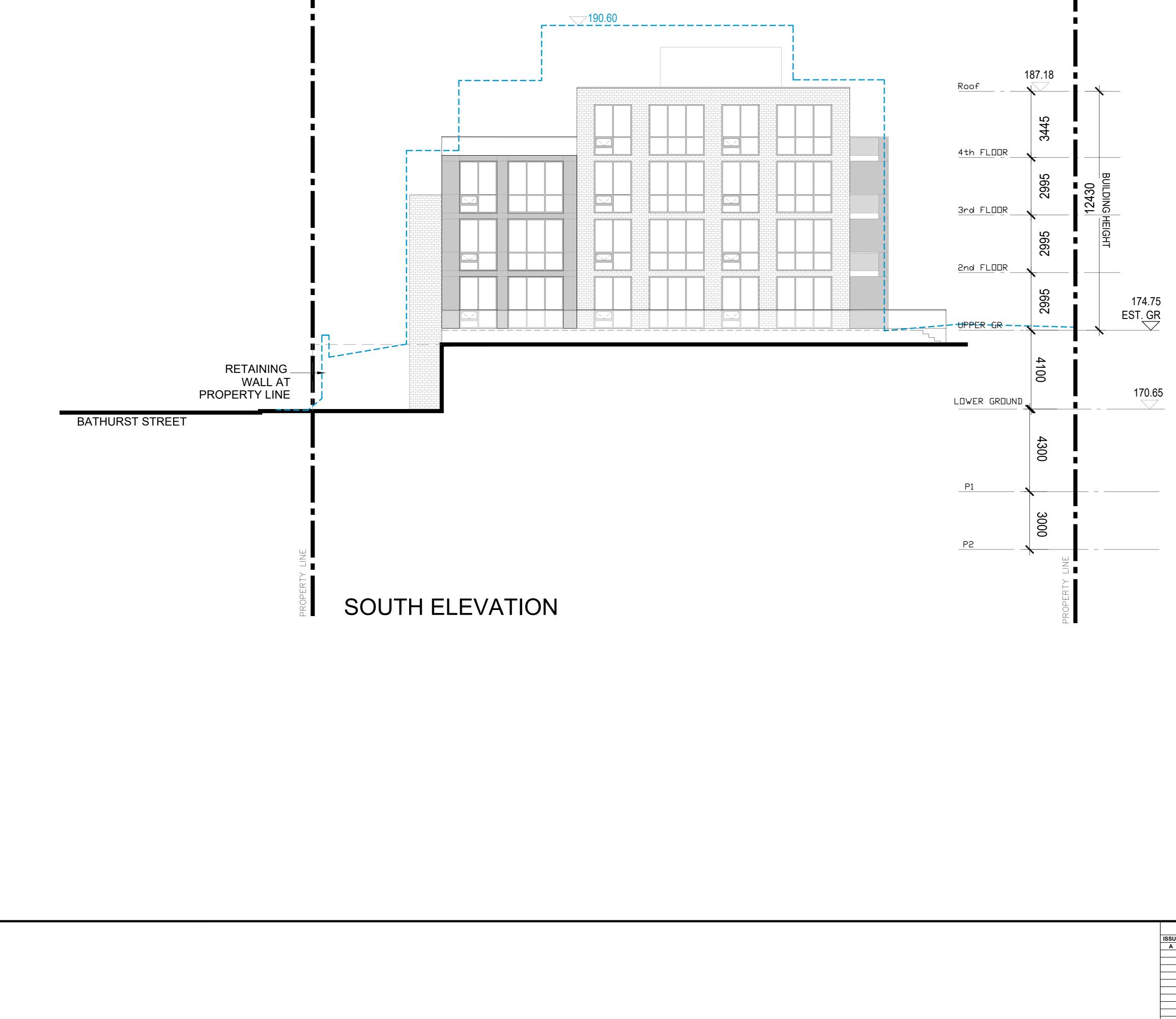
APPENDIX A



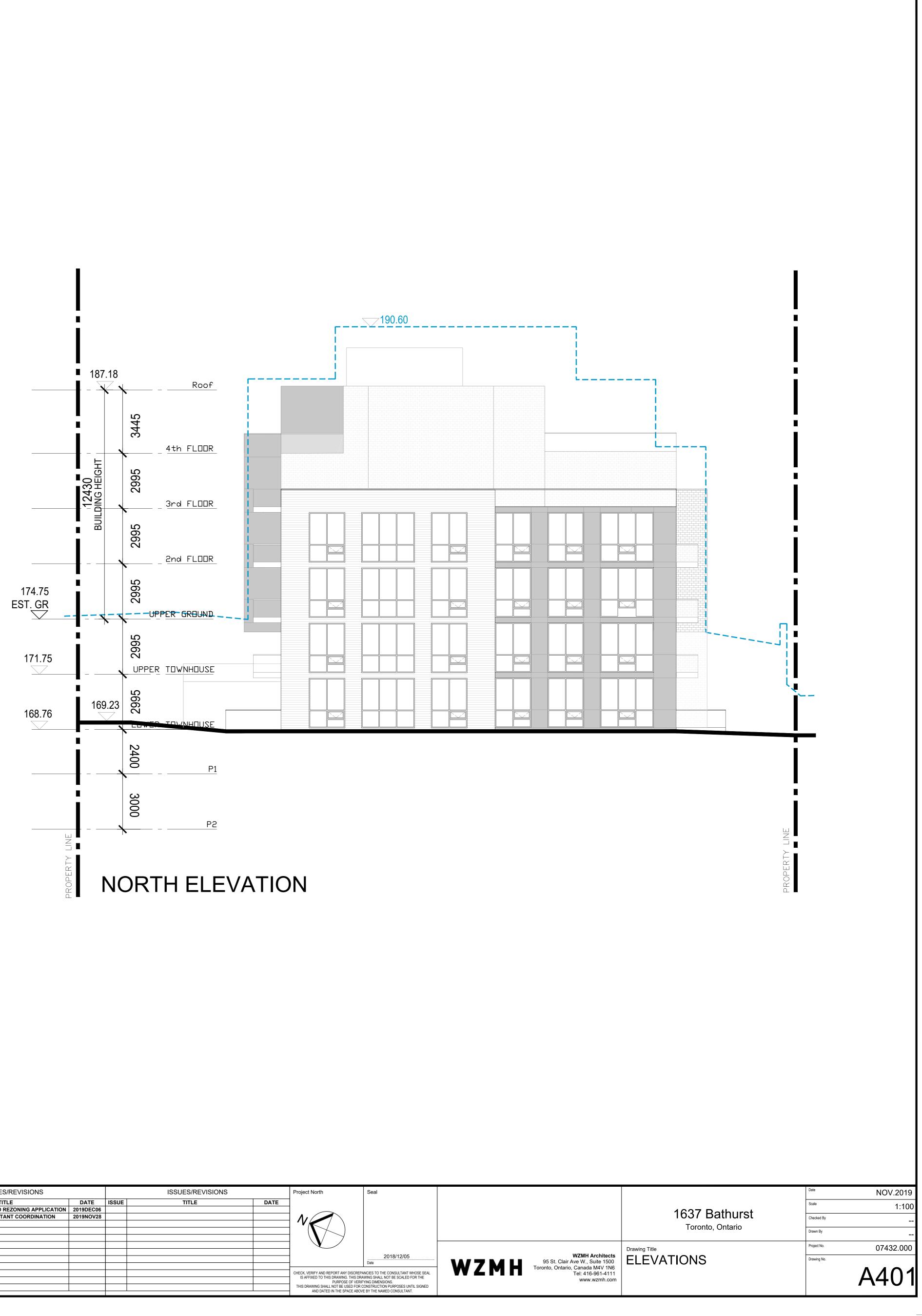

	BOUNDARY AND TOPOGRAPHIC SURVEY OF LOTS 4 TO 10 INCLUSIVE PLAN M-347 CITY OF TORONTO SCALE 1:200 D 10 15 200 T KROMAR SURVEYORS LTD. 2016 T KROMAR SURVEYORS LTD. 2016 METRIC: DISTANCES SHOWN HEREON ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0:3048 BEARING BEARING BEARING OF HIG 36' OOTN. ELEVATION ELEVATION SHOWN HEREON ARE GEODETIC AND ARE REFERRED TO THE EASTREN SHOWN HEREON ARE OGEODETIC AND ARE REFERRED TO THE EASTREN SHOWN HEREON ARE GEODETIC AND ARE REFERRED TO THE EASTREN SHOWN HEREON ARE GEODETIC AND ARE REFERRED TO THE EASTREN SHOWN HEREON ARE GEODETIC AND ARE RELATED TO CITY OF TORONTO BEDRING HARK NG. CAT305, HANGK AND ELEVATION OF 19:728 METRES.
Image: State Stat	LUCKING BERCH BARG NG, CILLSO, HAVING AN ELEVATION OF 107.729 BERKS LEGEND DENOTES SURVEY MONUMENT FUNNTED BB DENOTES SURVEY BOUNDENT FUNNTED BB DENOTES FUNNTEN (M) DENOTES FUNNTEN BB DENOTES FUNN
ASSOCIATION OF ONTARIO LAND SURVEYORS ALGO BARGETORS 1966846 LAND SURVEYORS 1966846 LAND ALGO UNLEST ITS NEW SEED ORIGINAL COPY DRIVEN THE NEW SEED ORIGINAL COPY DRIVEN THE NEW SEED ORIGINAL COPY DRIVEN THE NEW SEED	Ton KRCLAR (TABLA LAB BURGET) OPVERGHT 2016 SERCIAL STRUCTURES TTP. This docstructure to scantformere unauthorized reproduction. distribution. alternation or use, in whole or in part, is strictly prohibited. PLAN AVAILABLE AT www.ProtectYourBoundaries.ca PLAN AVAILABLE AT www.ProtectYourBoundaries.ca RED 0.1 0HWR CL 0HERED: SNR. 08 NO. 16-012 DWS MARE 10.1 0HWR CL 0HERED: SNR. 08 NO. 16-012 1137 Cerre Sheet Thomaid OH L43.346 085.728.0053 FMS/738.021 www.ensect KR CM AT R NR R R R R

APPENDIX B


	ISSUES/REVISIONS			ISSUES/REVISIONS ISSUES/REVISIONS			Project North	Seal		
	ISSUE	TITLE	DATE	ISSUE	TITLE	DATE	1			
	Α	ISSUED FOR SPA AND REZONING APPLICATION	2019DEC06						Cto	
		ISSUED FOR CONSULTANT COORDINATION	2019NOV28				N N		SIA	
									0.00	
									In	
								2018/12/05		
								 Date		
							CHECK, VERIFY AND REPORT ANY DISCREPANCIES TO THE CONSULTANT WHOSE SEAL IS AFFIXED TO THIS DRAWING. THIS DRAWING SHALL NOT BE SCALED FOR THE PURPOSE OF VERIFYING DIMENSIONS. THIS DRAWING SHALL NOT BE USED FOR CONSTRUCTION PURPOSES UNTIL SIGNED AND DATED IN THE SPACE ABOVE BY THE NAMED CONSULTANT.		WZM	
						AND DATED IN THE SPACE ADOV	E DI THE NAMED CONCOLTANT.			



	ISSUES/REVISIONS			ISSUES/REVISIONS	Project North	Seal	
IS	UE TITLE	DATE	ISSUE	TITLE DATE	7		
	ISSUED FOR SPA AND REZONING APPLICATION	2019DEC06					Cto.
	ISSUED FOR CONSULTANT COORDINATION	2019NOV28					Star
							- Jeil
							In
					_	2018/12/05	
					_	Date	
					_	1	WZM
						ANCIES TO THE CONSULTANT WHOSE SEAL AWING SHALL NOT BE SCALED FOR THE	
					PURPOSE OF VER	FYING DIMENSIONS.	
						CONSTRUCTION PURPOSES UNTIL SIGNED VE BY THE NAMED CONSULTANT.	
1					-		



		ISSUES/REVISIONS			ISSUES/REVISIONS		Project North	Seal	
Ì	ISSUE	TITLE	DATE	ISSUE	TITLE	DATE	1		
	Α	ISSUED FOR SPA AND REZONING APPLICATION	2019DEC06						Cto
[ISSUED FOR CONSULTANT COORDINATION	2019NOV28						SIA
									In
							_	2018/12/05	
							_	 Date	
								1	WZM
							CHECK, VERIFY AND REPORT ANY DISCREP. IS AFFIXED TO THIS DRAWING. THIS DRA		
						PURPOSE OF VERIFYING DI		YING DIMENSIONS.	
							THIS DRAWING SHALL NOT BE USED FOR AND DATED IN THE SPACE ABOV		

	ISSUES/REVISIONS			ISSUES/REVISIONS		Project North	Seal	
ISSUE	TITLE	DATE	ISSUE	TITLE	DATE	1		
Α	ISSUED FOR SPA AND REZONING APPLICATION	2019DEC06						
	ISSUED FOR CONSULTANT COORDINATION	2019NOV28						
							2018/12/05	
							Date	
							Bate	
						CHECK, VERIFY AND REPORT ANY DISCREPA IS AFFIXED TO THIS DRAWING. THIS DRA		
						PURPOSE OF VERIF		
						THIS DRAWING SHALL NOT BE USED FOR C AND DATED IN THE SPACE ABOV		
						AND DATED IN THE SPACE ABOV	E BT THE NAMED CONSULTANT.	

3100					PARKIN		4060						DRIVE AISLE		
							30						DRIVE AISLE		
							! INF (וס ווע SF BUII	NG OLITI I	NE AT MID	DLE OF SIT	E FROM F	REZONING APPLICATI	ON - FFR	09 2018
									JUTL						
		. — ¬													ERTY LINE
															PROPERI
UNIT	UNIT				UNIT			UNIT			UNIT		UNIT		
UNIT	Γ	UN	JIT		UNIT			UNIT		l	UNIT		UNIT		
	UNIT			UNIT				UNIT			UNIT				
		UN	IIT	UNIT				UNIT			UNIT		UNIT		
SERVICE		EXIT	B	IKE STORA	AGE		41 8 AMEN	NITY		LOCKER	S		MECH. ROOM		
	7.5% slope						4300					TO MECH.	TO ELECT.		
	7.5% slope						3000						,		
23)F BLIII וח	NG OLITU			F FROM F	REZONING APPLICATI	ON - FED	09 2018
	ISSUES/REVISIONS TITLE ED FOR SPA AND REZONING APPLICATION ED FOR CONSULTANT COORDINATION	DATE ISS N 2019DEC06 2019NOV28		IES/REVISIONS TITLE	DATE	Project North	Seal		Star	light [™]	6		37 Bathurst Toronto, Ontario	Date Scale Checked By Drawn By	NOV.2019 1:100
						IS AFFIXED TO THIS DRAWING PURPOS THIS DRAWING SHALL NOT BE U	2018/12/ Date Y DISCREPANCIES TO THE CONSULTA G. THIS DRAWING SHALL NOT BE SCA SE OF VERIFYING DIMENSIONS. USED FOR CONSTRUCTION PURPOSE PACE ABOVE BY THE NAMED CONSUL	ANT WHOSE SEAL ALED FOR THE ES UNTIL SIGNED	N Z M	95 St. Clair <i>A</i> Toronto, Ontario,		awing Title		Project No. Drawing No.	07432.000 \-420

3100				4060			
						DRIVE AISLE	
				LINE OF BUILDING OUTLI	NE AT MIDDLE OF SIT	E FROM REZONING APPLICAT	ON - FEB 09 2018
							PROPERTY LINE
UNI	Т	UNIT	UNIT	UNIT	UNIT	UNIT	
UNI	JNIT UNIT UNIT			UNIT	UNIT	UNIT	
	UN	JIT	UNIT		JNIT	UNIT	
		UNIT	UNIT	UNIT	UNIT	UNIT	
SERVICE		EXIT I	BIKE STORAGE	4 8 AMENITY	LOCKERS	MECH. ROOM	
	7.5% slope			4300		TO MECH. ELECT.	
	7.5% slope			3000			
25				LINE OF BUILDING OUTLI	NE AT MIDDLE OF SIT	E FROM REZONING APPLICAT	ON - FEB 09 2018
	ISSUES/REVISIONS TITLE UED FOR SPA AND REZONING APPLICATION UED FOR CONSULTANT COORDINATION	DATE ISSUE	SUES/REVISIONS TITLE DATE	Seal Starl Invest	ight stments	Toronto Ontario	Date NOV.2019 Scale 1:100 Checked By Drawn By
			CHECK, VERIFY AND REPORT ANY I CHECK, VERIFY AND REPORT ANY I IS AFFIXED TO THIS DRAWING. PURPOSE THIS DRAWING SHALL NOT BE US AND DATED IN THE SPA	2018/12/05 Date V DISCREPANCIES TO THE CONSULTANT WHOSE SEAL 3. THIS DRAWING SHALL NOT BE SCALED FOR THE E OF VERIFYING DIMENSIONS. ISED FOR CONSTRUCTION PURPOSES UNTIL SIGNED ACE ABOVE BY THE NAMED CONSULTANT.			Project No. 07432.000 Drawing No. A-420

APPENDIX C

RECORD OF BOREHOLE 1

: G5168

LOCATION : 1637 Bathurst Street, Toronto, Ontario

MC CLYMONT & RAK ENGINEERS, INC.

SHEET 1 OF 1

17

 STARTED
 :
 July 6, 2017

 COMPLETED
 :
 July 6, 2017

PROJECT

UEPTH SCALE (metres)	AETHOD	SOIL PROFILE	-OT			MPLI		(ppr	n)	VAPO 200	UR RE 300	ADINGS Ø			ENGTH: - • - •	: Cu, K 60	Pa Q - X U - ▲ 80	ONAL STING	PIEZOMETE
(metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m		LEL (he	40	60	80	wp			1 F, PER 30	CENT H wl 40	ADDITIONAL LAB. TESTING	STANDPIF
		GROUND SURFACE		173.50															Eluch Marriet
		75 mm ASPHALT FILL: clayey silt, some sand and gravel, trace of brick pieces, brown, moist, stiff. SANDY SILT TILL: some clay, trace of gravel, brown, moist, dense.		178.68 172.74 0.76	1		36 S)											Flush Mount Cover
2		SANDY SILT: brown, moist, very dense.		171.98 1.52	3	SS	55 🕸)											
		CLAYEY SILT TILL: some sand, trace of gravel, brown, moist, hard.		171.21 2.29	4	SS	66	5											Bentonite
4	ſ	-grey below 4.9 m depth.			6		>100												9.15 m Long
6	POWER BORING HOLLOW STEM AUGER	SANDY SILT TILL: some clay, trace of gravel, grey, moist, very dense.		167.10 6.40		SS	90 &												50 mm ID PVC Riser
3		CLAYEY SILT: grey, moist to wet, hard.		165.88 7.62	0	SS		40 ⊗											165.00 Silica Sand 164.35
10		SILTY CLAY: grey, moist, hard.		9.45															
		SANDY SILT: grey, wet, very dense. CLAYEY SILT TILL: some sand, trace of gravel, grey, moist, hard.		162.83 10.67 162.53 10.97	. 10	SS	50 &)											3.05 m Long 50 mm ID Well Screen
12		End of Borehole		161.06 12.44	11	SS	>10 0)											161.30
14		Note: 1) Borehole remained dry on completion of drilling. 2) Soil samples were screened using a RKI Eagle gas meter with methane response mode off. 3) Water level was measured at 6.23 m bgs on July 21, 2017.																	
		GROUNDWATER ELEVATIO				EP	/DU	AL II						LOGGI	=D ·	NS			

RECORD OF BOREHOLE 2

: G5168

PROJECT

LOCATION : 1637 Bathurst Street, Toronto, Ontario

STARTED : August 14, 2017

ц	G	3	SOIL PROFILE			SAN	/PL	ES	ORC (ppm	ANIC	VAPC	UR F		NGS ⊗	SHEA	R STR nat V	ENGTH	l: Cu, K	Pa Q - 🗙	, (J	
DEPTH SCALE (metres)	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	10 % L	00 2 EL (he	200 exane) 40	300 60	40		WA ⁻		40 DNTEN		80 I	ADDITIONAL LAB. TESTING	PIEZOMETE OR STANDPIP INSTALLATIO
			GROUND SURFACE	0,	171.95																
			FILL: sitly sand, brown, moist, compact. -trace of organics and rootlets in the upper 350 mm.					16 Ø													Flush Mount Cover
2		-	SANDY SILT: brown, moist, compact.		170.43 1.52			17 (\$													
			SANDY SILT TILL: trace of clay and gravel, brown, moist, very dense to dense.		_ 169.66 2.29	4	SS	70 🕸													Bentonite
4						5	SS	77 🕸													
		-	-some clay below 4.55 m depth.		_ 167.10 4.85	6	SS	33 🕸													
	U		CLAYEY SILT TILL: trace of sand and gravel, grey, moist, hard.		4.00																9.15 m Long 50 mm ID PVC Riser
6	POWER BORING	SOLID STEM AUC	-moist to wet below 6.1 m depth.			7	SS	30 🕸													
8		-	SANDY SILT TILL: trace of clay and gravel, grey, moist, very dense.		164.33 7.62	8	SS	75 ⊗													163.45
10						9	SS	53 Ø													Silica Sand
						10	SS	؛ 1008-	j												3.05 m Long 50 mm ID Well Screen
12			End of Borehole		159.48 12.47	11	SS	>100													159.75
14			 Note: 1) Water level was measured at 11.28 m bgs on completion of drilling. 2) Soil samples were screened using a RKI Eagle gas meter with methane response mode off. 																		
			GROUNDWATER ELEVATIO				EP	/DU	AL IN	ISTA			N			LOGG	ED :	NB			

MC CLYMONT & RAK ENGINEERS, INC.

SHEET 1 OF 1

RECORD OF BOREHOLE 3

: G5168

LOCATION : 1637 Bathurst Street, Toronto, Ontario

STARTED : June 17, 2017

PROJECT

COMPLETED : August 14, 2017

щ	QO		SOIL PROFILE			SAM	PLI	ES	OR0 (ppn	GANIC n)	VAPC	JUR F	READ	NGS ⊗	SHEA	R STRI nat V rem V	ENGTH	: Cu, I	<pa Q - X U - ▲</pa 	_ <u>0</u>	
DEPTH SCALE (metres)	AETH	Γ		LOT		۲	Τ	.3m			200	300	4	00	2	rem V 0 4	- • 10	60	U - ▲ 80	ADDITIONAL LAB. TESTING	PIEZOMETER OR
TH.	2 UD N		DESCRIPTION	TA PI	ELEV.	NUMBER	IYPE	VS/0.	% L	EL (he	xane)			WAT	ER CC	NTEN	r, pef	RCENT	, TEI	STANDPIPE INSTALLATION
Ē	BORING METHOD			STRATA PLOT	DEPTH (m)		-	BLOWS/0.3m	2	20	40	60	ε	80	wp 1			30	— wl 40	LAE	INSTALLATION
		_	GROUND SURFACE	05	174.55			_			-										
			FILL: silty sand, to sandy silt.			1 5	ss	70)												
			silty sand, to sandy silt, brown, moist, loose. -trace of organics and rootlets in the upper 350 mm.		172 70			, ,													
			SANDY SILT TILL: trace of clay and gravel, brown, moist, compact to very dense.	ЙĨ	173.79 0.76	2 5		290)												
			brown, moist, compact to very dense.	\mathbb{N}		2 3	50	294	,												
						3 5	ss	60 0)												
2				\mathcal{V}		3 3		000	,												
				И		4 5	ss	350)												
				$ \rangle$																	
			-oxidized fissures below 3.05 m depth.	K/		5 5	ss	36 0)												
							_	000													
4				\mathcal{M}																	
				H																1	
			-grey below 4.55 m depth.	$ \rangle$		6 5	20	30 0)												
				$\langle \rangle$				50 0	, 												
		~		И																	
	Ŋ	SOLID STEM AUGER		$ \rangle$																	
i	POWER BORING	EM AI				7 5		240)												
	NER	0 STE		ľ		/ 3	55	24 9	,												
	PO	SOLIE		H																	
		Ĵ		$\langle \rangle$																	
									25												
3						8 5	55	47	8												
				X																	
							_		35												
						9 5	SS	38	8												
10				И																	
10				H																	
				K			_		15												
						10 5	SS	73	8												$\overline{\Delta}$
				И																	
				$ \rangle$																	
12					162.26		_		10												
			SILTY SAND: grey, wet, very dense.	И	162.26 12.29 162.05 16 2.5 16 4.5 0 12.65	11 8	SS	56	9											1	
			SANDY SILT TILL: trace of clay and gravel, grey, moist, very dense.		12.65															1	
			End of Borehole																	1	
			Note: 1) Water level was measured at 10.97 m bgs on completion of drilling																	1	
14			1) Water level was measured at 10.97 m bgs on completion of drilling. 2) Soil samples were screened using a RKI Eagle gas meter with methane response mode off.																		
																				1	
			GROUNDWATER ELEVATIO	NS	ļ					1				I	I	1	I	1		1	
			$\overline{\mathcal{Y}}$ SHALLOW/SINGLE INSTALLATIO				=P	וס/		NSTA			N			LOGGI	- n				
			WATER LEVEL (date)	••		VATE						0				CHECH		LM	/OM/NB		
					•			_ • •	- (301	-1								LIV			

MC CLYMONT & RAK ENGINEERS, INC.

SHEET 1 OF 1 DATUM Geodetic

APPENDIX D

MCCLYMONT & RAK ENG. INC ATTN: Jeremy Bobro 111 ZENWAY BLVD. UNIT 4 VAUGHAN ON L4H 3H9 Date Received:28-AUG-17Report Date:06-SEP-17 13:42 (MT)Version:FINAL

Client Phone: 416-675-0160

Certificate of Analysis

Lab Work Order #:L1982331Project P.O. #:NOT SUBMITTEDJob Reference:G5168C of C Numbers:15-611920Legal Site Desc:

Mathy Mahadeva Account Manager Z

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

G5168

Som

ANALYTICAL GUIDELINE REPORT

L1982331 CONTD

Page 2 of 7 06-SEP-17 13:42 (MT)

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits
			0.2.				Guidelli	
L1982331-1 BH1								
Sampled By: CLIENT on 28-AUG-17 @ 07:30						#1	#2	
Matrix: WATER						#1	#2	
Physical Tests								
pH	7.95		0.10	pH units	29-AUG-17	6.00-11.5	6.0-9.5	
Total Suspended Solids	8.8		2.0	 mg/L	01-SEP-17	350	15	
Anions and Nutrients							-	
Fluoride (F)	<0.20	DLDS	0.20	mg/L	31-AUG-17	10		
Total Kjeldahl Nitrogen	<0.15		0.15	mg/L	30-AUG-17	100		
Phosphorus, Total	0.0211		0.0030	mg/L	01-SEP-17	10	0.4	
Cyanides					•••••			
Cyanide, Total	<0.0020		0.0020	mg/L	05-SEP-17	2	0.02	
Bacteriological Tests						~	0.02	
E. Coli	0		0	CFU/100m	30-AUG-17		200	
2.00				L	00700-17		200	
Total Metals								
Aluminum (AI)-Total	0.144		0.010	mg/L	30-AUG-17	50		
Antimony (Sb)-Total	0.00028		0.00010	mg/L	30-AUG-17	5		
Arsenic (As)-Total	0.00246		0.00010	mg/L	30-AUG-17	1	0.02	
Cadmium (Cd)-Total	<0.000010		0.000010	mg/L	30-AUG-17	0.7	0.008	
Chromium (Cr)-Total	0.00077		0.00050	mg/L	30-AUG-17	4	0.08	
Cobalt (Co)-Total	<0.00010		0.00010	mg/L	30-AUG-17	5		
Copper (Cu)-Total	<0.0010		0.0010	mg/L	30-AUG-17	2	0.04	
Lead (Pb)-Total	0.00021		0.00010	mg/L	30-AUG-17	1	0.12	
Manganese (Mn)-Total	0.0167		0.00050	mg/L	30-AUG-17	5	0.05	
Mercury (Hg)-Total	<0.000010		0.000010	mg/L	29-AUG-17	0.01	0.0004	
Molybdenum (Mo)-Total	0.00433		0.000050	mg/L	30-AUG-17	5		
Nickel (Ni)-Total	0.00058		0.00050	mg/L	30-AUG-17	2	0.08	
Selenium (Se)-Total	0.000173		0.000050	mg/L	30-AUG-17	1	0.02	
Silver (Ag)-Total	<0.000050		0.000050	mg/L	30-AUG-17	5	0.12	
Tin (Sn)-Total	0.00087		0.00010	mg/L	30-AUG-17	5		
Titanium (Ti)-Total	0.00227		0.00030	mg/L	30-AUG-17	5		
Zinc (Zn)-Total	0.0104		0.0030	mg/L	30-AUG-17	2	0.04	
Speciated Metals								
Chromium, Hexavalent	<0.0010		0.0010	mg/L	30-AUG-17	2	0.04	
Aggregate Organics								
BOD	<2.0		2.0	mg/L	03-SEP-17	300	15	
Oil and Grease, Total	<2.0		2.0	mg/L	30-AUG-17			
Animal/Veg Oil & Grease	<2.0		2.0	mg/L	01-SEP-17	150		
Mineral Oil and Grease	<1.0		1.0	mg/L	30-AUG-17	15		
Phenols (4AAP)	0.0045		0.0010	mg/L	30-AUG-17	1.0	0.008	
Volatile Organic Compounds								
Benzene	<0.50		0.50	ug/L	30-AUG-17	10	2	
Chloroform	<1.0		1.0	ug/L	30-AUG-17	40	2	
1,2-Dichlorobenzene	<0.50		0.50	ug/L	30-AUG-17	50	5.6	
1,4-Dichlorobenzene	<0.50		0.50	ug/L	30-AUG-17	80	6.8	
cis-1,2-Dichloroethylene	<0.50		0.50	ug/L	30-AUG-17	4000	5.6	
Dichloromethane	<2.0		2.0	ug/L	30-AUG-17	2000	5.2	
trans-1,3-Dichloropropene	<0.50		0.50	ug/L	30-AUG-17	140		

** Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Toronto Sanitary Discharge Sewer By-Law 100-2016 (FEB 4,2016) = [Suite] - ON_Toronto Sanitary+Storm Sewer By-Law

#1: Ontario Toronto Sanitary Discharge Sewer By-Law

(JAN,2000) #2: Ontario Toronto Storm Sewer By-Law

G5168

ANALYTICAL GUIDELINE REPORT

L1982331 CONTD

Page 3 of 7 06-SEP-17 13:42 (MT)

G5168								06-SEP-17 1	3:42 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L1982331-1 BH1									
Sampled By: CLIENT on 28-AUG-17 @ 07:30									
Matrix: WATER						#1	#2		
Volatilo Organic Compounds									
Volatile Organic Compounds	0.50		0.50						
Ethylbenzene	<0.50		0.50	ug/L	30-AUG-17	160	2		
1,1,2,2-Tetrachloroethane	<0.50		0.50	ug/L	30-AUG-17	1400	17		
Tetrachloroethylene	<0.50		0.50	ug/L	30-AUG-17	1000	4.4		
Toluene	<0.50		0.50	ug/L	30-AUG-17	16	2		
Trichloroethylene	<0.50		0.50	ug/L	30-AUG-17	400	7.6		
o-Xylene	<0.50		0.50	ug/L	30-AUG-17				
m+p-Xylenes	<1.0		1.0	ug/L	30-AUG-17				
Xylenes (Total)	<1.1		1.1	ug/L	30-AUG-17	1400	4.4		
Surrogate: 4-Bromofluorobenzene	97.0		70-130	%	30-AUG-17				
Surrogate: 1,4-Difluorobenzene	101.8		70-130	%	30-AUG-17				
Polycyclic Aromatic Hydrocarbons									
Acenaphthene	<0.010		0.010	ug/L	05-SEP-17				
Anthracene	<0.010		0.010	ug/L	05-SEP-17				
Benzo(a)anthracene	<0.010		0.010	ug/L	05-SEP-17				
Benzo(a)pyrene	<0.010		0.010	ug/L	05-SEP-17				
Benzo(b)fluoranthene	<0.010		0.010	ug/L	05-SEP-17				
Benzo(e)pyrene	<0.050		0.050	ug/L	05-SEP-17				
Benzo(ghi)perylene	<0.010		0.010	ug/L	05-SEP-17				
Benzo(k)fluoranthene	<0.010		0.010	ug/L	05-SEP-17				
Chrysene	<0.010		0.010	ug/L	05-SEP-17				
Dibenz(a,h)acridine	<0.050		0.050	ug/L	05-SEP-17				
Dibenz(a,j)acridine	<0.050		0.050	ug/L	05-SEP-17				
Dibenzo(a,h)anthracene	<0.010		0.010	ug/L	05-SEP-17				
Dibenzo(a,i)pyrene	<0.050		0.050	ug/L	05-SEP-17				
7H-Dibenzo(c,g)carbazole	<0.050		0.050	ug/L	05-SEP-17				
1,3-Dinitropyrene	<1.0		1.0	ug/L	05-SEP-17				
1,6-Dinitropyrene	<1.0		1.0	ug/L	05-SEP-17				
1,8-Dinitropyrene	<1.0		1.0	ug/L	05-SEP-17				
Fluoranthene	<0.010		0.010	ug/L	05-SEP-17				
Fluorene	<0.010		0.010	ug/L	05-SEP-17				
Indeno(1,2,3-cd)pyrene	<0.010		0.010	ug/L	05-SEP-17				
Naphthalene	<0.010		0.010	ug/L	05-SEP-17				
Perylene	<0.010		0.010	ug/L	05-SEP-17				
Phenanthrene	<0.010		0.010	ug/L	05-SEP-17				
Pyrene	<0.010		0.010	ug/L	05-SEP-17				
Surrogate: 2-Fluorobiphenyl	87.4		40-130	%	05-SEP-17				
Surrogate: d14-Terphenyl	91.6		40-130	%	05-SEP-17				
Surrogate: p-Terphenyl d14	96.5		40-130	%	05-SEP-17				
Total PAHs	<1.7		1.7	ug/L	05-SEP-17	5	2		
Phthalate Esters				~ . .		, v	-		
Bis(2-ethylhexyl)phthalate	<2.0		2.0	ug/L	01-SEP-17	12	8.8		
Surrogate: 2-fluorobiphenyl	<2.0 95.2		2.0 40-130	ug/∟ %	01-SEP-17 01-SEP-17	١Z	0.0		
Surrogate: p-Terphenyl d14	95.2 99.8		40-130 40-130	%	01-SEP-17 01-SEP-17				
Semi-Volatile Organics	33.0		40-130	/0	01-327-17				
_	-0.40		0.40		01 850 47	0	0.0		
3,3'-Dichlorobenzidine	<0.40		0.40	ug/L	01-SEP-17	2	0.8		

** Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Toronto Sanitary Discharge Sewer By-Law 100-2016 (FEB 4,2016) = [Suite] - ON_Toronto Sanitary+Storm Sewer By-Law

#1: Ontario Toronto Sanitary Discharge Sewer By-Law

(JAN,2000) #2: Ontario Toronto Storm Sewer By-Law

G5168

ANALYTICAL GUIDELINE REPORT

L1982331 CONTD

Page 4 of 7 06-SEP-17 13:42 (MT)

Sample Details								JO-SEP-17 13:42 (MIT)
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits
L1982331-1 BH1								
Sampled By: CLIENT on 28-AUG-17 @ 07:30								
Matrix: WATER						#1	#2	
Semi-Volatile Organics								
	10		4.0		04.050.47		4 -	
Di-n-butylphthalate	<1.0		1.0	ug/L	01-SEP-17	80	15	
Surrogate: 2-Fluorobiphenyl Surrogate: p-Terphenyl d14	95.2		40-130	%	01-SEP-17			
Surrogate. p-Terphenyl 014	99.8		40-130	%	01-SEP-17			
Phenolics								
Pentachlorophenol	<0.50		0.50	ug/L	01-SEP-17	5	2	
Surrogate: 2,4,6-Tribromophenol	74.1		40-150	%	01-SEP-17	U U	-	
Polychlorinated Biphenyls				,				
Aroclor 1242	<0.020		0.020	ug/L	31-AUG-17			
Aroclor 1248	<0.020		0.020	ug/L	31-AUG-17			
Aroclor 1254	<0.020		0.020	ug/L	31-AUG-17			
Aroclor 1260	<0.020		0.020	ug/L	31-AUG-17			
Total PCBs	<0.040		0.040	ug/L	31-AUG-17	1	0.4	
Surrogate: 2-Fluorobiphenyl	71.7		50-150	%	31-AUG-17			
Organic Parameters								
Nonylphenol	<1.0		1.0	ug/L	30-AUG-17	20	1	
Total Nonylphenol Ethoxylates	<2.0		2.0	ug/L	30-AUG-17	200	10	

** Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Ontario Toronto Sanitary Discharge Sewer By-Law 100-2016 (FEB 4,2016) = [Suite] - ON_Toronto Sanitary+Storm Sewer By-Law

ample Parameter Qualifier key listed _

Sample Param	eter Qualifier key listed:	:	
Qualifier	Description		
DLDS	Detection Limit Raised:	Dilution required due to high Disso	Ived Solids / Electrical Conductivity.
Methods Liste	d (if applicable):		
ALS Test Code	e Matrix	Test Description	Method Reference***
	ZIDINE-WT Water	3,3-Dichlorobenzidine	SW846 8270
Aqueous sam 625-BIS-2-PHT		tracts are analyzed on GC/MSD. Bis(2-ethylhexyl)phthalate	SW846 8270
Aqueous sam 625-DNB-PHTI	•	tracts are analyzed on GC/MSD. Di-n-Butyl Phthalate	SW846 8270
Aqueous sam 625-PAH-LOW	•	tracts are analyzed on GC/MSD. EPA 8270 PAH (Low Level)	SW846 8270
		tracts are analyzed on GC/MSD. D co(b)fluoranthene or benzo(k)fluoran	Depending on the analytical GC/MS column used benzo(j)fluoranthene may nthene.
625-PCP-WT	Water	Pentachlorophenol	SW846 8270
BOD-WT	Water	BOD	APHA 5210 B
oxygen dema dissolved oxy	nd (BOD) are determined gen meter. Dissolved BO	by diluting and incubating a sampl	5210B - "Biochemical Oxygen Demand (BOD)". All forms of biochemical e for a specified time period, and measuring the oxygen depletion using a ering the sample through a glass fibre filter prior to dilution. Carbonaceous sample prior to incubation. ISO 14403-2
CIN-TOT-WT	Water	Cyanide, Total	150 14403-2
			ation. Cyanide is converted to cyanogen chloride by reacting with chloramine- and isonicotinic acid to form a highly colored complex.
detectable cy	anide analyzed by this me	ethod, ALS recommends analysis f	false positives at ~1-2% of the thiocyanate concentration. For samples with or thiocyanate to check for this potential interference
CR-CR6-IC-W	Г Water	Chromium +6	EPA 7199
States Enviro	nmental Protection Agend	cy (EPA). The procedure involves a	for Evaluating Solid Waste" SW-846, Method 7199, published by the United inalysis for chromium (VI) by ion chromatography using diphenylcarbazide in a ween the total chromium and the chromium (VI) results.
Protection Ac	t (July 1, 2011).	-	s Used in the Assessment of Properties under Part XV.1 of the Environmental
EC-WW-MF-W	T Water	E. Coli	SM 9222D
A 100 mL vol Method ID: W		through a membrane, the membrar	ne is placed on mFC-BCIG agar and incubated at 44.5 –0 .2 °C for 24 – 2 h.
F-IC-N-WT	Water	Fluoride in Water by IC	EPA 300.1 (mod)
Inorganic anio HG-T-CVAA-W		hromatography with conductivity an Total Mercury in Water by CVAAS	nd/or UV detection. EPA 1631E (mod)
Water sample MET-T-CCMS-	•	on using bromine monochloride pric Total Metals by CRC ICPMS	or to reduction with stannous chloride, and analyzed by CVAAS. EPA 200.2/6020A (mod)
Water sample	es are digested with nitric	and hydrochloric acids, and analyz	ed by CRC ICPMS.
Method Limita	ation (re: Sulfur): Sulfide a	and volatile sulfur species may not	be recovered by this method.
Protection Ac	t (July 1, 2011).	the Protocol for Analytical Method	s Used in the Assessment of Properties under Part XV.1 of the Environmental
NP,NPE-LCMS		Nonylphenols and Ethoxylates by LC/MS-MS	J. Chrom A849 (1999) p.467-482
Water sample OGG-SPEC-C		njection and analyzed by LCMS/MS Speciated Oil and Grease A/V	CALCULATION
Sample is ext determined g		Calc ble speciation into mineral and anim	nal/vegetable fractions is achieved via silica gel separation and is then
OGG-SPEC-W	T Water	Speciated Oil and Grease- Gravimetric	APHA 5520 B
The procedur	e involves an extraction o	f the entire water sample with hexa	ne. Sample speciation into mineral and animal/vegetable fractions is

The procedure involves an extraction of the entire water sample with hexane. Sample speciation into mineral and animal/vegetable fractions is achieved via silica gel separation and is then determined gravimetrically.

WТ

Reference Information

P-T-COL-WT	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS	
This analysis is carried ou after persulphate digestion			4500-P "Phosphorus". Total Phosphorus	is deteremined colourimetrically
PAH-EXTRA-WT	Water	Sanitary Sewer Use By-Law Additional PAH	SW846 8270	
PAH-SUM-CALC-WT	Water	TOTAL PAH's	CALCULATION	
Total PAH represents the Total PAH in terms of the			nple. Note that regulatory agencies and	criteria differ in their definitions of
PCB-WT	Water	Polychlorinated Biphenyls	EPA 8082	
PCBs are extracted from a are analyzed by GC/MSD		mple at neutral pH with aliquots of	dichloromethane using a modified separ	atory funnel technique. The extracts
PH-WT	Water	pH	APHA 4500 H-Electrode	
Water samples are analyz	zed directly by	a calibrated pH meter.		
Protection Act (July 1, 20	11). Holdtime f	or samples under this regulation is		nder Part XV.1 of the Environmental
PHENOLS-4AAP-WT	Water	Phenol (4AAP)	EPA 9066	
An automated method is red complex which is mea		•	ffered to pH 9.4 which reacts with 4AAP	and potassium ferricyanide to form a
SOLIDS-TSS-WT	Water	Suspended solids	APHA 2540 D-Gravimetric	
A well-mixed sample is fill four hours or until a const			r and the residue retained is dried in an c	oven at 104–1°C for a minimum of
TKN-WT	Water	Total Kjeldahl Nitrogen	APHA 4500-N	
Sample is digested to con by the instrument is propo	overt the TKN to the contribution of the contributication of the contribution of the contribution of the c	o ammonium sulphate. The ammo concentration of ammonium sulpha	nia ions are heated to produce a colour on the sample and is reported as TKN.	complex. The absorbance measured
VOC-ROU-HS-WT	Water	Volatile Organic Compounds	SW846 8260	
Aqueous samples are ana	alyzed by head	lspace-GC/MS.		
XYLENES-SUM-CALC- WT	Water	Sum of Xylene Isomer Concentrations	CALCULATION	
Total xylenes represents t	the sum of o-xy	ylene and m&p-xylene.		
ALS test methods may in	icorporate mod	difications from specified reference	methods to improve performance.	
Chain of Custody number	rs:			
15-611920				
The last two letters of the	above test co	de(s) indicate the laboratory that p	erformed analytical analysis for that test.	Refer to the list below:
Laboratory Definition Co	ode Labora	tory Location	Laboratory Definition Code	Laboratory Location

ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Reference Information

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million. < - Less than. D.L. - The reporting limit. N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

			Workorder:	L198233 [.]	1	Report Date: 0	6-SEP-17		Page 1 of 12
Client: Contact:	111 ZENW	ONT & RAK ENG /AY BLVD. UNIT N ON L4H 3H9 obro	-						
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
				Result	Quanner	01113			Analyzeu
625-33DCBENZI		Water							
Batch F WG2604506-2 3,3'-Dichlorob				92.1		%		50-140	31-AUG-17
WG2604506-3 3,3'-Dichlorob			WG2604506-2 92.1	94.2		%	2.2	50	31-AUG-17
WG2604506-1 3,3'-Dichlorob				<0.40				0.4	04 4110 47
Surrogate: p-		114		<0.40 117.7		ug/L %		0.4 40-130	31-AUG-17 31-AUG-17
625-BIS-2-PHTH-	wT	Water							
	R3815818 LCS			89.1		%		50-140	31-AUG-17
WG2604506-3 Bis(2-ethylhe	LCSD		WG2604506-2 89.1	89.8		%	0.8	50	31-AUG-17
WG2604506-1									
Bis(2-ethylhe>	kyl)phthalate	е		<2.0		ug/L		2	31-AUG-17
Surrogate: 2-f		-		95.9		%		40-130	31-AUG-17
Surrogate: p-	Terphenyl d	114		117.7		%		40-130	31-AUG-17
625-DNB-PHTH-V	ΝT	Water							
Batch F WG2604506-2 Di-n-butylphth				95.8		%		50-150	31-AUG-17
WG2604506-3 Di-n-butylphth			WG2604506-2 95.8	96.3		%	0.5	50	31-AUG-17
WG2604506-1 Di-n-butylphth				<1.0		ug/L		1	31-AUG-17
Surrogate: 2-F	Fluorobiphe	enyl		95.9		%		40-130	31-AUG-17
Surrogate: p-	Terphenyl d	114		117.7		%		40-130	31-AUG-17
625-PAH-LOW-W	/т	Water							
	R3815626								
WG2604506-2 Acenaphthene				76.9		%		50-140	31-AUG-17
Anthracene				82.6		%		50-140	31-AUG-17
Benzo(a)anth	racene			83.5		%		50-140	31-AUG-17
Benzo(a)pyrei				82.2		%		60-130	31-AUG-17
Benzo(b)fluor				70.5		%		50-140	31-AUG-17
Benzo(ghi)per	rylene			72.8		%		50-140	31-AUG-17

Report Date: 06-SEP-17 Workorder: L1982331 Page 2 of 12 MCCLYMONT & RAK ENG. INC

Client: 111 ZENWAY BLVD. UNIT 4 VAUGHAN ON L4H 3H9

Contact: Jeremy Bobro

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
625-PAH-LOW-WT	Water							
Batch R3815626								
WG2604506-2 LCS Benzo(k)fluoranthene			93.6		%		50-140	24 4110 47
Chrysene			93.0 85.9		%		50-140 50-140	31-AUG-17 31-AUG-17
Dibenzo(a,h)anthracene			79.9		%			
Fluoranthene	,		87.8		%		50-140 50-140	31-AUG-17 31-AUG-17
Fluorene			82.8		%			
Indeno(1,2,3-cd)pyrene			71.8		%		50-140 50-140	31-AUG-17 31-AUG-17
Naphthalene			81.7		%		50-140 50-140	31-AUG-17 31-AUG-17
Perylene			93.8		%			
Phenanthrene			93.8 81.6		%		50-140 50-140	31-AUG-17 31-AUG-17
Pyrene			85.7		%		50-140 50-140	31-AUG-17 31-AUG-17
WG2604506-3 LCSD		WG2604506-			<i>,</i> ,,		50-140	JI-AUG-17
Acenaphthene		76.9	77.2		%	0.4	50	31-AUG-17
Anthracene		82.6	85.5		%	3.5	50	31-AUG-17
Benzo(a)anthracene		83.5	84.3		%	1.0	50	31-AUG-17
Benzo(a)pyrene		82.2	82.9		%	0.9	50	31-AUG-17
Benzo(b)fluoranthene		70.5	72.5		%	2.8	50	31-AUG-17
Benzo(ghi)perylene		72.8	70.7		%	2.8	50	31-AUG-17
Benzo(k)fluoranthene		93.6	95.5		%	2.0	50	31-AUG-17
Chrysene		85.9	88.7		%	3.3	50	31-AUG-17
Dibenzo(a,h)anthracene	•	79.9	77.4		%	3.3	50	31-AUG-17
Fluoranthene		87.8	88.1		%	0.3	50	31-AUG-17
Fluorene		82.8	81.8		%	1.3	50	31-AUG-17
Indeno(1,2,3-cd)pyrene		71.8	70.6		%	1.7	50	31-AUG-17
Naphthalene		81.7	83.3		%	2.0	50	31-AUG-17
Perylene		93.8	94.4		%	0.6	50	31-AUG-17
Phenanthrene		81.6	82.7		%	1.4	50	31-AUG-17
Pyrene		85.7	86.9		%	1.4	50	31-AUG-17
WG2604506-1 MB								
Acenaphthene			<0.010		ug/L		0.01	31-AUG-17
Anthracene			<0.010		ug/L		0.01	31-AUG-17
Benzo(a)anthracene			<0.010		ug/L		0.01	31-AUG-17
Benzo(a)pyrene			<0.010		ug/L		0.01	31-AUG-17
Benzo(b)fluoranthene			<0.010		ug/L		0.01	31-AUG-17
							0.01	

Report Date: 06-SEP-17

Page 3 of 12

Workorder: L1982331

				_1002001			_, ,,		Tage 5 01 12
Client:	111 ZENW	NT & RAK ENG. AY BLVD. UNIT 4 ON L4H 3H9							
Contact:	Jeremy Bol								
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
625-PAH-LOW-W	л	Water							
Batch F	R3815626								
WG2604506-1 Benzo(ghi)pe				<0.010		ug/L		0.01	31-AUG-17
Benzo(k)fluor	anthene			<0.010		ug/L		0.01	31-AUG-17
Chrysene				<0.010		ug/L		0.01	31-AUG-17
Dibenzo(a,h)a	anthracene			<0.010		ug/L		0.01	31-AUG-17
Fluoranthene				<0.010		ug/L		0.01	31-AUG-17
Fluorene				<0.010		ug/L		0.01	31-AUG-17
Indeno(1,2,3-	cd)pyrene			<0.010		ug/L		0.01	31-AUG-17
Naphthalene				<0.010		ug/L		0.01	31-AUG-17
Perylene				<0.010		ug/L		0.01	31-AUG-17
Phenanthrene	e			<0.010		ug/L		0.01	31-AUG-17
Pyrene				<0.010		ug/L		0.01	31-AUG-17
Surrogate: 2-I	Fluorobipher	nyl		91.0		%		40-130	31-AUG-17
Surrogate: p-	Terphenyl d1	4		108.1		%		40-130	31-AUG-17
625-PCP-WT		Water							
Batch F	R3815818								
WG2604506-2 Pentachloropl				135.8		%		50-140	31-AUG-17
WG2604506-3			WG2604506-2	10010				00 140	5170017
Pentachloropl			135.8	128.6		%	5.4	50	31-AUG-17
WG2604506-1				0.50				۰ <i>.</i>	
Pentachloropl		a h a a a l		<0.50		ug/L		0.5	31-AUG-17
Surrogate: 2,4	4,6-1 ribromo	phenoi		96.5		%		40-150	31-AUG-17
BOD-WT		Water							
	R3819507								
WG2603861-2 BOD	DUP		L1982338-1 <2.0	<2.0	RPD-NA	mg/L	N/A	20	03-SEP-17
WG2603861-3	LCS		~2.0	~ 2.0	KFD-NA	-	N/A	20	03-3EF-17
BOD				98.2		%		85-115	03-SEP-17
WG2603861-1 BOD	MB			<2.0		mg/L		2	03-SEP-17
CN-TOT-WT		Water							
Batch F	R3819126								
WG2608454-7 Cyanide, Tota			L1981658-1 <0.0020	<0.0020	RPD-NA	mg/L	N/A	20	05-SEP-17
WG2608454-6	LCS								
4									

				Quant	y 001111	ornepo				
			Workorder:	L1982331		Report Dat	te: 06-SE	EP-17		Page 4 of 12
Client:	111 ZENV	ONT & RAK ENG WAY BLVD. UNIT N ON L4H 3H9								
Contact:	Jeremy B	obro								
Test		Matrix	Reference	Result	Qualifier	Units		RPD	Limit	Analyzed
CN-TOT-WT		Water								
Batch	R3819126									
WG2608454-6 Cyanide, Tota				89.9		%			80-120	05-SEP-17
WG2608454-5 Cyanide, Tota				<0.0020		mg/L			0.002	05-SEP-17
WG2608454-8 Cyanide, Tota			L1981658-1	86.5		%			70-130	05-SEP-17
CR-CR6-IC-WT		Water								
Batch	R3815465									
WG2605635-4	4 DUP		WG2605635-3							
Chromium, H	lexavalent		<0.0010	<0.0010	RPD-NA	mg/L		N/A	20	30-AUG-17
WG2605635-2 Chromium, H				101.6		%			80-120	30-AUG-17
WG2605635-1	I MB									
Chromium, H	lexavalent			<0.0010		mg/L			0.001	30-AUG-17
WG2605635- Chromium, H			WG2605635-3	100.1		%			70-130	30-AUG-17
EC-WW-MF-WT		Water								
Batch	R3814887									
WG2603801-3	B DUP		L1982331-1							
E. Coli			0	0		CFU/10	0mL	0.0	50	30-AUG-17
WG2603801-4	4 DUP		L1982330-1							
E. Coli			0	0		CFU/10	0mL	0.0	50	30-AUG-17
WG2603801- 1 E. Coli	I MB			0		CFU/10)0mL		1	30-AUG-17
F-IC-N-WT		Water								
Batch	R3816951									
WG2606002-4			WG2606002-3							
Fluoride (F)			0.035	0.033		mg/L		7.6	20	31-AUG-17
WG2606002-2 Fluoride (F)	2 LCS			99.1		%			90-110	31-AUG-17
WG2606002- 1 Fluoride (F)	I MB			<0.020		mg/L			0.02	31-AUG-17
WG2606002-5 Fluoride (F)	5 MS		WG2606002-3	94.8		%			75-125	31-AUG-17
HG-T-CVAA-WT		Water								

			Workorder:	_1982331	Re	port Date: 06-SE	EP-17		Page 5 of 12
Client:	111 ZENV VAUGHAI	ONT & RAK ENG WAY BLVD. UNIT N ON L4H 3H9							
Contact:	Jeremy B	obro							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
HG-T-CVAA-WT	-	Water							
Batch WG2603551- Mercury (Hg			L1982330-1 <0.000010	<0.000010	RPD-NA	mg/L	N/A	20	29-AUG-17
WG2603551- Mercury (Hg				95.9		%		80-120	29-AUG-17
WG2603551- Mercury (Hg				<0.000010		mg/L		0.00001	29-AUG-17
WG2603551- Mercury (Hg			L1982331-1	88.1		%		70-130	29-AUG-17
MET-T-CCMS-W		Water							
Batch	R3815386	mator							
WG2604469-			WG2604469-3						
Aluminum (A	Al)-Total		0.0416	0.0433		mg/L	3.9	20	30-AUG-17
Antimony (S	b)-Total		0.00011	0.00011		mg/L	7.2	20	30-AUG-17
Arsenic (As)	-Total		0.00267	0.00273		mg/L	2.5	20	30-AUG-17
Cadmium (C	d)-Total		<0.000010	<0.000010	RPD-NA	mg/L	N/A	20	30-AUG-17
Chromium (0	Cr)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	30-AUG-17
Cobalt (Co)-	Total		0.00101	0.00098		mg/L	2.4	20	30-AUG-17
Copper (Cu)	-Total		0.0015	<0.0010	RPD-NA	mg/L	N/A	20	30-AUG-17
Lead (Pb)-Te	otal		0.000098	0.000100		mg/L	2.2	20	30-AUG-17
Manganese	(Mn)-Total		0.335	0.333		mg/L	0.8	20	30-AUG-17
Molybdenum	n (Mo)-Total		0.00524	0.00528		mg/L	0.7	20	30-AUG-17
Nickel (Ni)-T	otal		0.00304	0.00292		mg/L	3.9	20	30-AUG-17
Selenium (S	e)-Total		0.000053	0.000054		mg/L	2.5	20	30-AUG-17
Silver (Ag)-T	otal		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	30-AUG-17
Tin (Sn)-Tota	al		0.00020	0.00019		mg/L	3.9	20	30-AUG-17
Titanium (Ti)	-Total		0.00138	0.00154		mg/L	11	20	30-AUG-17
Zinc (Zn)-To	tal		<0.0030	<0.0030	RPD-NA	mg/L	N/A	20	30-AUG-17
WG2604469- Aluminum (A				101.8		%		80-120	30-AUG-17
Antimony (S				102.2		%		80-120	30-AUG-17
Arsenic (As)	,			99.7		%		80-120	30-AUG-17
Cadmium (C				97.8		%		80-120	30-AUG-17
Chromium (98.1		%		80-120	30-AUG-17
Cobalt (Co)-	,			97.3		%		80-120	30-AUG-17
Copper (Cu)				97.3		%		80-120	30-AUG-17

 Workorder:
 L1982331
 Report Date:
 06-SEP-17
 Page
 6
 of
 12

 MCCLYMONT & RAK ENG. INC
 MCCLYM

Client: MCCLYMONT & RAK ENG. IN 111 ZENWAY BLVD. UNIT 4 VAUGHAN ON L4H 3H9

Contact: Jeremy Bobro

Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-T-CCMS-WT Water			- /						.
Bath R3815386 W20204469-7 0.05 Laad (P) Total 99.2 % Manganese (Mn)-Total 100.1 % 80-120 30-AUG-17 Mokybdenum (Mo)-Total 100.4 % 80-120 30-AUG-17 Mokybdenum (Mo)-Total 97.3 % 80-120 30-AUG-17 Steinlum (Se)-Total 95.1 % 80-120 30-AUG-17 Silver (Ag)-Total 97.9 % 80-120 30-AUG-17 Tinsim (T)-Total 70.0 % 80-120 30-AUG-17 Zinc (Zn)-Total 82.9 % 80-120 30-AUG-17 Marmium (M)-Total -0.0050 mgL 0.0051 30-AUG-17 Antimony (Sb)-Total -0.0050 mgL 0.0051 30-AUG-17 Antimony (Sb)-Total -0.00010 mgL 0.001 30-AUG-17 Cadmium (Cr)-Total -0.00050 mgL 0.0005 30-AUG-17 Cadmium (Cr)-Total -0.00050 mgL 0.0001 30-AUG-17 <	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Wates Uses Uses <thuses< th=""> Uses Uses <th< th=""><th>MET-T-CCMS-WT</th><th>Water</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<></thuses<>	MET-T-CCMS-WT	Water							
Lead (Pb)-Total 99.2 % 80.120 30-AUG-17 Manganese (Mn)-Total 100.1 % 80.120 30-AUG-17 Molybidenum (Mo)-Total 97.3 % 80.120 30-AUG-17 Silenium (Se)-Total 97.3 % 80.120 30-AUG-17 Silenium (Se)-Total 97.3 % 80.120 30-AUG-17 Silver (Ag)-Total 97.0 % 80.120 30-AUG-17 Titanium (T)-Total 97.0 % 80.120 30-AUG-17 Zinc (2n)-Total 97.0 % 80.120 30-AUG-17 Auminum (N)-Total -0.0050 mg/L 0.0051 30-AUG-17 Auminum (N)-Total -0.00010 mg/L 0.0001 30-AUG-17 Auminum (N)-Total -0.00010 mg/L 0.0001 30-AUG-17 Cadmium (Cr)-Total -0.00010 mg/L 0.0001 30-AUG-17 Cadmium (Cr)-Total -0.00050 mg/L 0.0005 30-AUG-17 Cadmium (Cr)-Total -0.00050 mg/L		6							
Manganese (Mn)-Total 100.1 % 80-120 30-AUG-17 Molybdenum (Mo)-Total 100.4 % 80-120 30-AUG-17 Nickel (Ni)-Total 97.3 % 80-120 30-AUG-17 Silver (Ag)-Total 97.3 % 80-120 30-AUG-17 Silver (Ag)-Total 97.9 % 80-120 30-AUG-17 Tin (Sn)-Total 97.0 % 80-120 30-AUG-17 Tin (Sn)-Total 97.0 % 80-120 30-AUG-17 Tintaium (Ti)-Total 97.0 % 80-120 30-AUG-17 Tintaium (Ti)-Total 97.0 % 80-120 30-AUG-17 Auminum (A)Total 97.0 % 80-120 30-AUG-17 Auminum (A)-Total -0.00010 mg/L 0.0011 30-AUG-17 Auminum (A)-Total -0.00010 mg/L 0.0011 30-AUG-17 Cadmin (Cd)-Total -0.00010 mg/L 0.0011 30-AUG-17 Chomium (Cd)-Total -0.000050 mg/L 0.0013				00.2		0/		80.400	20 410 47
Molybdenum (Mo)-Total 100.4 % Bortar Bortar Nickel (Ni)-Total 97.3 % B0-120 30-AUG-17 Selenum (Se)-Total 95.1 % B0-120 30-AUG-17 Silver (Ag)-Total 97.9 % B0-120 30-AUG-17 Silver (Ag)-Total 97.9 % B0-120 30-AUG-17 Titans (Sn)-Total 97.0 % B0-120 30-AUG-17 Zince (Zn)-Total 92.9 % B0-120 30-AUG-17 Auminum (A)-Total -0.0050 mg/L 0.0051 30-AUG-17 Arsenic (As)-Total -0.0050 mg/L 0.001 30-AUG-17 Arsenic (As)-Total -0.00010 mg/L 0.001 30-AUG-17 Cadmium (Cd)-Total -0.00050 mg/L 0.0001 30-AUG-17 Cadmium (Cd)-Total -0.00010 mg/L 0.0011 30-AUG-17 Cadmium (Cd)-Total -0.00050 mg/L 0.0005 30-AUG-17 Cadmium (Cd)-Total -0.00050 mg/L		1							
Nickel (Ni)-Total97.3%80-12030-AUG-17Selenium (Se)-Total97.9%80-12030-AUG-17Silver (Ag)-Total97.9%80-12030-AUG-17Titanium (Ti)-Total97.0%80-12030-AUG-17Zinc (Zn)-Total92.9%80-12030-AUG-17Marmium (Ti)-Total0.0050mg/L0.005130-AUG-17Adminum (A)-Total0.0050mg/L0.005130-AUG-17Adminum (Gh)-Total0.00010mg/L0.000130-AUG-17Adminum (Gh)-Total0.00010mg/L0.000130-AUG-17Cdminum (Cd)-Total0.00010mg/L0.000130-AUG-17Cdminum (Cd)-Total0.00010mg/L0.000130-AUG-17Cdminum (Cd)-Total0.00010mg/L0.000130-AUG-17Cdminum (Gh)-Total0.00010mg/L0.000130-AUG-17Maganese (Mn)-Total0.00050mg/L0.000530-AUG-17Maganese (Mn)-Total0.00050mg/L0.0005030-AUG-17Mickel (Ni)-Total0.00050mg/L0.0005030-AUG-17Nickel (Ni)-Total0.00050mg/L0.0005030-AUG-17Silver (Ag)-Total0.00050mg/L0.0005030-AUG-17Silver (Ag)-Total0.00050mg/L0.0005030-AUG-17Nickel (Ni)-Total0.00050mg/L0.0005030-AUG-17Silver (Ag)-Total0.00050mg/L0.0005030-AUG-17Silve									
Selenium (Se)-Total 96.1 % 80-120 30-AUG-17 Silver (Ag)-Total 97.9 % 80-120 30-AUG-17 Tin (Sn)-Total 100.9 % 80-120 30-AUG-17 Tin (Sn)-Total 97.0 % 80-120 30-AUG-17 Tin (Sn)-Total 92.9 % 80-120 30-AUG-17 Muminum (A)-Total -0.0050 mg/L 0.0051 30-AUG-17 Ahminum (A)-Total -0.00010 mg/L 0.0001 30-AUG-17 Assenic (As)-Total -0.00010 mg/L 0.0001 30-AUG-17 Cadmium (Cd)-Total -0.00010 mg/L 0.0001 30-AUG-17 Cobati (Co)-Total -0.00010 mg/L 0.0001 30-AUG-17 Cobati (Co)-Total -0.00010 mg/L 0.0001 30-AUG-17 Cobati (Co)-Total -0.00050 mg/L 0.0005 30-AUG-17 Maganese (Mn)-Total -0.00050 mg/L 0.0005 30-AUG-17 Molydenum (Mo)-Total -0.00050 mg/L <td></td> <td>al</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		al							
Silver (Ag)-Total 97.9 % 80.120 30.AUG-17 Tin (Sh)-Total 100.9 % 80.120 30.AUG-17 Tiltanium (Ti)-Total 97.0 % 80.120 30.AUG-17 Zinc (Zh)-Total 97.0 % 80.120 30.AUG-17 Zinc (Zh)-Total 97.0 % 80.120 30.AUG-17 Mumium (Al)-Total 0.0050 mg/L 0.0051 30.AUG-17 Alumium (Al)-Total <0.00010									
Tin (Sh)-Total 100.9 % 80-120 30-AUG-17 Titanium (Ti)-Total 97.0 % 80-120 30-AUG-17 Zinc (Zh)-Total 92.9 % 80-120 30-AUG-17 WG2604469-1 MB - - - - Alumium (A)-Total <0.0050									
Titanium (Ti)-Total 97.0 % 80-120 30-AUG-17 Zinc (Zn)-Total 92.9 % 80-120 30-AUG-17 Muser									
Zinc (Zn)-Total 92.9 % 80-120 30-AUG-17 Aluminum (Al)-Total <0.0050									
WC2604489-1 MB Aluminum (A)-Total <0.0050									
Aluminum (Al)-Total <0.0050				92.9		%		80-120	30-AUG-17
Antimony (Sb)-Total <0.00010				<0.0050		mg/L		0.005	30-AUG-17
Arsenic (As)-Total <0.00010)	-			
Cadmium (Cd)-Total 0.00010 mg/L 0.00011 30-AUG-17 Chromium (Cr)-Total <0.00050	2 ()					-			
Chromium (Cr)-Total <0.00050 mg/L 0.00051 30-AUG-17 Cobalt (Co)-Total <0.00010				<0.00001	10	-		0.00001	
Cobalt (Co)-Total <0.0001 30-AUG-17 Copper (Cu)-Total <0.0010				<0.00050)			0.0005	
Copper (Cu)-Total <0.0010 mg/L 0.001 30-AUG-17 Lead (Pb)-Total <0.00050	Cobalt (Co)-Total			<0.00010)			0.0001	
Lead (Pb)-Total <0.00050 mg/L 0.00050 30-AUG-17 Manganese (Mn)-Total <0.00050	Copper (Cu)-Total			<0.0010				0.001	
Manganese (Mn)-Total <0.00050	Lead (Pb)-Total			<0.00005	50			0.00005	30-AUG-17
Molybdenum (Mo)-Total <0.00050 mg/L 0.00050 30-AUG-17 Nickel (Ni)-Total <0.00050	Manganese (Mn)-Tota	I		<0.00050)	mg/L		0.0005	30-AUG-17
Nickel (Ni)-Total <0.00050	Molybdenum (Mo)-Tot	al		<0.00005	50	mg/L		0.00005	
Silver (Ag)-Total <0.000050	Nickel (Ni)-Total			<0.00050)	mg/L		0.0005	
Tin (Sn)-Total <0.00010	Selenium (Se)-Total			<0.00005	50	mg/L		0.00005	30-AUG-17
Titanium (Ti)-Total<0.00030mg/L0.000330-AUG-17Zinc (Zn)-Total<0.0030mg/L0.00330-AUG-17WG2604469-5MSWG2604469-3MG2604469-3MG2604469-3MG2604469-3Aluminum (Al)-Total106.2%70-13030-AUG-17Antimony (Sb)-Total106.8%70-13030-AUG-17Arsenic (As)-Total102.8%70-13030-AUG-17Cadmium (Cd)-Total91.2%70-13030-AUG-17Chromium (Cr)-Total91.2%70-13030-AUG-17Cobalt (Co)-Total94.4%70-13030-AUG-17	Silver (Ag)-Total			<0.00005	50	mg/L		0.00005	30-AUG-17
Titanium (Ti)-Total <0.00030 mg/L 0.0003 30-AUG-17 Zinc (Zn)-Total <0.0030 mg/L 0.003 30-AUG-17 WG2604469-5 MS WG2604469-5 MS WG2604469-5 MS Output Notput Aluminum (Al)-Total MG2604469-5 MS WG2604469-5 MS Output Notput	Tin (Sn)-Total			<0.00010)	mg/L		0.0001	30-AUG-17
WG2604469-5 MS WG2604469-3 Aluminum (Al)-Total 106.2 % 70-130 30-AUG-17 Antimony (Sb)-Total 106.8 % 70-130 30-AUG-17 Arsenic (As)-Total 102.8 % 70-130 30-AUG-17 Cadmium (Cd)-Total 91.2 % 70-130 30-AUG-17 Chromium (Cr)-Total 101.0 % 70-130 30-AUG-17 Cobalt (Co)-Total 94.4 % 70-130 30-AUG-17	Titanium (Ti)-Total			<0.00030)	mg/L		0.0003	30-AUG-17
Aluminum (Al)-Total 106.2 % 70-130 30-AUG-17 Antimony (Sb)-Total 106.8 % 70-130 30-AUG-17 Arsenic (As)-Total 102.8 % 70-130 30-AUG-17 Cadmium (Cd)-Total 91.2 % 70-130 30-AUG-17 Chromium (Cr)-Total 101.0 % 70-130 30-AUG-17 Cobalt (Co)-Total 94.4 % 70-130 30-AUG-17	Zinc (Zn)-Total			<0.0030		mg/L		0.003	30-AUG-17
Antimony (Sb)-Total106.8%70-13030-AUG-17Arsenic (As)-Total102.8%70-13030-AUG-17Cadmium (Cd)-Total91.2%70-13030-AUG-17Chromium (Cr)-Total101.0%70-13030-AUG-17Cobalt (Co)-Total94.4%70-13030-AUG-17	WG2604469-5 MS		WG2604469-3	•					
Arsenic (As)-Total 102.8 % 70-130 30-AUG-17 Cadmium (Cd)-Total 91.2 % 70-130 30-AUG-17 Chromium (Cr)-Total 101.0 % 70-130 30-AUG-17 Cobalt (Co)-Total 94.4 % 70-130 30-AUG-17	Aluminum (Al)-Total			106.2		%		70-130	30-AUG-17
Cadmium (Cd)-Total91.2%70-13030-AUG-17Chromium (Cr)-Total101.0%70-13030-AUG-17Cobalt (Co)-Total94.4%70-13030-AUG-17	Antimony (Sb)-Total			106.8		%		70-130	30-AUG-17
Chromium (Cr)-Total 101.0 % 70-130 30-AUG-17 Cobalt (Co)-Total 94.4 % 70-130 30-AUG-17	Arsenic (As)-Total			102.8		%		70-130	30-AUG-17
Cobalt (Co)-Total 94.4 % 70-130 30-AUG-17	Cadmium (Cd)-Total			91.2		%		70-130	30-AUG-17
	Chromium (Cr)-Total			101.0		%		70-130	30-AUG-17
Copper (Cu)-Total 81.7 % 70-130 30-AUG-17	Cobalt (Co)-Total			94.4		%		70-130	30-AUG-17
	Copper (Cu)-Total			81.7		%		70-130	30-AUG-17

			Workorder: I	L198233 [,]	1	Report Date:	06-SEP-17		Page 7 of 12
Client:	111 ZENV	ONT & RAK ENG VAY BLVD. UNIT N ON L4H 3H9							
Contact:	Jeremy Bo	obro							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-W	T	Water							
Batch WG2604469- Lead (Pb)-To			WG2604469-3	92.6		%		70-130	30-AUG-17
Manganese ((Mn)-Total			N/A	MS-B	%		-	30-AUG-17
Molybdenum	(Mo)-Total			102.1		%		70-130	30-AUG-17
Nickel (Ni)-Te	otal			91.2		%		70-130	30-AUG-17
Selenium (Se	e)-Total			95.3		%		70-130	30-AUG-17
Silver (Ag)-T	otal			93.5		%		70-130	30-AUG-17
Tin (Sn)-Tota	al			99.7		%		70-130	30-AUG-17
Titanium (Ti)	-Total			103.1		%		70-130	30-AUG-17
Zinc (Zn)-Tot	tal			89.9		%		70-130	30-AUG-17
NP,NPE-LCMS-	NТ	Water							
Batch	R3815568								
WG2603506- Nonylphenol	3 DUP		L1981071-1 <1.0	<1.0	RPD-NA	ug/L	N/A	30	30-AUG-17
WG2603506-2 Nonylphenol	2 LCS			90.0		%		75-125	30-AUG-17
WG2603506- Nonylphenol	1 MB			<1.0		ug/L		1	30-AUG-17
WG2603506- Nonylphenol	4 MS		L1981071-1	115.0		%		50-150	30-AUG-17
OGG-SPEC-WT		Water							
WG2604542-						0/			
Oil and Grea				90.5		%		70-130	30-AUG-17
Mineral Oil a				85.8		%		70-130	30-AUG-17
WG2604542- Oil and Grea			WG2604542-2 90.5	95.2		%	5.1	40	30-AUG-17
Mineral Oil a	nd Grease		85.8	88.7		%	3.3	40	30-AUG-17
WG2604542-	1 MB								
Oil and Grea	se, Total			<2.0		mg/L		2	30-AUG-17
Mineral Oil a	nd Grease			<1.0		mg/L		1	30-AUG-17
P-T-COL-WT		Water							
WG2606056- Phosphorus,	Total		L1981588-6 0.0112	0.0114		mg/L	1.6	20	01-SEP-17
WG2606056-2	2 LCS								

		Workorder:	L198233	1	Report Date: 06	-SEP-17		Page 8 of 12
Client:	MCCLYMONT & RAK 111 ZENWAY BLVD. U VAUGHAN ON L4H 3	JNIT 4						
Contact:	Jeremy Bobro							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
P-T-COL-WT	Water							
Batch WG2606056-								
Phosphorus,			102.2		%		80-120	01-SEP-17
WG2606056- Phosphorus,			<0.0030		mg/L		0.003	01-SEP-17
WG2606056- Phosphorus,		L1981588-6	90.2		%		70-130	01-SEP-17
-			••				10 100	
PAH-EXTRA-W	T Water R3816542							
WG2604506-								
Benzo(e)pyre			96.9		%		50-150	01-SEP-17
1,3-Dinitropy	rene		107.6		%		50-150	01-SEP-17
1,6-Dinitropy	rene		110.4		%		50-150	01-SEP-17
Dibenz(a,h)a	acridine		122.3		%		50-150	01-SEP-17
1,8-Dinitropy	rene		88.9		%		50-150	01-SEP-17
Dibenz(a,j)a	cridine		83.3		%		50-150	01-SEP-17
7H-Dibenzo((c,g)carbazole		105.5		%		50-150	01-SEP-17
Dibenzo(a,i)	pyrene		83.0		%		50-150	01-SEP-17
WG2604506- Benzo(e)pyre		WG2604506-2 96.9	92.2		%	5.0	50	01-SEP-17
1,3-Dinitropy		107.6	108.6		%	1.0	50	01-SEP-17
1,6-Dinitropy		110.4	111.9		%	1.3	50	01-SEP-17
Dibenz(a,h)a		122.3	120.2		%	1.8	50	01-SEP-17
1,8-Dinitropy		88.9	87.7		%	1.4	50	01-SEP-17
Dibenz(a,j)a		83.3	82.7		%	0.8	50	01-SEP-17
	(c,g)carbazole	105.5	102.5		%	2.9	50	01-SEP-17
Dibenzo(a,i)		83.0	82.2		%	0.9	50	01-SEP-17
WG2604506-	1 MB							
Benzo(e)pyre	ene		<0.050		ug/L		0.05	01-SEP-17
1,3-Dinitropy	rene		<1.0		ug/L		1	01-SEP-17
1,6-Dinitropy	rene		<1.0		ug/L		1	01-SEP-17
Dibenz(a,h)a	acridine		<0.050		ug/L		0.05	01-SEP-17
1,8-Dinitropy	vrene		<1.0		ug/L		1	01-SEP-17
Dibenz(a,j)a	cridine		<0.050		ug/L		0.05	01-SEP-17
7H-Dibenzo((c,g)carbazole		<0.050		ug/L		0.05	01-SEP-17
Dibenzo(a,i)	pyrene		<0.050		ug/L		0.05	01-SEP-17

				Quanty	00111101				
			Workorder: I	_1982331	Re	port Date: 06-SE	P-17		Page 9 of 12
Olient.	111 ZENV	ONT & RAK ENG. VAY BLVD. UNIT N ON L4H 3H9							
Contact:	Jeremy Bo	obro							
Test		Matrix	Reference	Result 0	Qualifier	Units	RPD	Limit	Analyzed
PAH-EXTRA-WT		Water							
Batch F	3816542								
WG2604506-1	MB								
Surrogate: d1	4-Terpheny	/l		96.2		%		40-130	01-SEP-17
PCB-WT		Water							
Batch F	3815705								
WG2605033-2 Aroclor 1242	LCS			78.9		%		65-130	31-AUG-17
Aroclor 1242				67.6		%		65-130	31-AUG-17 31-AUG-17
Aroclor 1240				93.2		%		65-130 65-130	31-AUG-17 31-AUG-17
Aroclor 1260				95.2 88.0		%		65-130 65-130	31-AUG-17 31-AUG-17
WG2605033-3	LCSD		WG2605033-2	00.0		/0		05-150	31-AUG-17
Aroclor 1242	2030		78.9	76.1		%	3.6	50	31-AUG-17
Aroclor 1248			67.6	67.6		%	0.0	50	31-AUG-17
Aroclor 1254			93.2	89.1		%	4.5	50	31-AUG-17
Aroclor 1260			88.0	84.9		%	3.6	50	31-AUG-17
WG2605033-1 Aroclor 1242	МВ			<0.020		ug/L		0.02	31-AUG-17
Aroclor 1242				<0.020		ug/L		0.02	31-AUG-17 31-AUG-17
Aroclor 1248				<0.020		ug/L		0.02	
Aroclor 1260				<0.020		ug/L		0.02	31-AUG-17 31-AUG-17
Surrogate: 2-F	Iuorobiphe	envl		76.0		%		50-150	31-AUG-17 31-AUG-17
PH-WT	a conception	Water		10.0		70			31-200-17
	3814630	Hatei							
WG2603521-4			WG2603521-3						
рН	201		8.12	8.12	J	pH units	0.00	0.2	29-AUG-17
WG2603521-2	LCS								
рН				6.99		pH units		6.9-7.1	29-AUG-17
PHENOLS-4AAP	wt	Water							
Batch F	3814473								
WG2604474-1 Phenols (4AA			L1981947-25 <0.0010	<0.0010	RPD-NA	mg/L	N/A	20	30-AUG-17
WG2604474-1						5			
Phenols (4AA				111.4		%		85-115	30-AUG-17
WG2604474-1									
Phenols (4AA	P)			<0.0010		mg/L		0.001	30-AUG-17
SOLIDS-TSS-WT		Water							

SOLIDS-TSS-WT Water

		Workorder:	L198233 ²	I R	eport Date: 0	6-SEP-17		Page 10 of 12
Client:	MCCLYMONT & RAK EN 111 ZENWAY BLVD. UN VAUGHAN ON L4H 3HS	IT 4						
Contact:	Jeremy Bobro							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SOLIDS-TSS-WT	Water							
Batch R WG2605657-3 Total Suspend	-	L1982179-1 171	167		mg/L	2.4	20	01-SEP-17
WG2605657-2 Total Suspend			100.7		%		85-115	01-SEP-17
WG2605657-1 Total Suspend			<2.0		mg/L		2	01-SEP-17
TKN-WT	Water							
Batch F	3815895							
WG2604585-3 Total Kjeldahl		L1981802-2 5.01	4.99		mg/L	0.4	20	30-AUG-17
WG2604585-2 Total Kjeldahl			101.2		%		75-125	30-AUG-17
WG2604585-1 Total Kjeldahl			<0.15		mg/L		0.15	30-AUG-17
WG2604585-4 Total Kjeldahl	-	L1981802-2	N/A	MS-B	%		-	30-AUG-17
VOC-ROU-HS-W	r Water							
WG2593382-4		WG2593382-3						
1,1,2,2-Tetrac		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-AUG-17
1,2-Dichlorobe		<0.50 <0.50	<0.50 <0.50	RPD-NA	ug/L ug/L	N/A	30	30-AUG-17
Benzene		<0.50 1.82	<0.50 1.75	RPD-NA	ug/L	N/A	30 20	30-AUG-17
Chloroform		<1.02	<1.0	RPD-NA	ug/L	3.9 N/A	30 30	30-AUG-17
cis-1,2-Dichlor	roethvlene	16.4	15.5		ug/L	5.3	30	30-AUG-17 30-AUG-17
Dichlorometha		<2.0	<2.0	RPD-NA	ug/L	0.0 N/A	30	30-AUG-17
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-AUG-17
m+p-Xylenes		<1.0	<1.0	RPD-NA	ug/L	N/A	30	30-AUG-17
o-Xylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-AUG-17
Tetrachloroeth	nylene	3.57	3.35		ug/L	6.4	30	30-AUG-17
Toluene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-AUG-17
trans-1,3-Dich	loropropene	<0.50	<0.50	RPD-NA	ug/L	N/A	30	30-AUG-17
Trichloroethyle	ene	0.99	0.90		ug/L	9.5	30	30-AUG-17
WG2593382-1 1,1,2,2-Tetrac			87.0		%		70-130	30-AUG-17
1,2-Dichlorobe	enzene		94.6		%		70-130	30-AUG-17

Report Date: 06-SEP-17

Page 11 of 12

Workorder: L1982331

MCCLYMONT & RAK ENG. INC Client: 111 ZENWAY BLVD. UNIT 4

VAUGHAN	ON	L4H 3H9

Contact: Jeremy Bobro

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R38148	14							
WG2593382-1 LC 1,4-Dichlorobenzene			98.1		%		70.400	
					%		70-130	30-AUG-17
Benzene			97.8				70-130	30-AUG-17
Chloroform			96.2		%		70-130	30-AUG-17
cis-1,2-Dichloroethyle	ene		94.0		%		70-130	30-AUG-17
Dichloromethane			97.9		%		70-130	30-AUG-17
Ethylbenzene			89.1		%		70-130	30-AUG-17
m+p-Xylenes			91.8		%		70-130	30-AUG-17
o-Xylene			89.6		%		70-130	30-AUG-17
Tetrachloroethylene			93.8		%		70-130	30-AUG-17
Toluene			89.4		%		70-130	30-AUG-17
trans-1,3-Dichloropro	ppene		82.0		%		70-130	30-AUG-17
Trichloroethylene			96.8		%		70-130	30-AUG-17
WG2593382-2 MB 1,1,2,2-Tetrachloroet			<0.50		ug/L		0.5	00 4110 47
1,2-Dichlorobenzene			<0.50		ug/L		0.5	30-AUG-17
1,4-Dichlorobenzene			<0.50 <0.50		-		0.5	30-AUG-17
Benzene			<0.50 <0.50		ug/L		0.5 0.5	30-AUG-17
Chloroform			<0.50 <1.0		ug/L		0.5	30-AUG-17
					ug/L			30-AUG-17
cis-1,2-Dichloroethyle	ene		<0.50		ug/L		0.5	30-AUG-17
Dichloromethane			<2.0		ug/L		2	30-AUG-17
Ethylbenzene			<0.50		ug/L		0.5	30-AUG-17
m+p-Xylenes			<1.0		ug/L		1	30-AUG-17
o-Xylene			<0.50		ug/L		0.5	30-AUG-17
Tetrachloroethylene			<0.50		ug/L		0.5	30-AUG-17
Toluene			<0.50		ug/L		0.5	30-AUG-17
trans-1,3-Dichloropro	opene		<0.50		ug/L		0.5	30-AUG-17
Trichloroethylene			<0.50		ug/L		0.5	30-AUG-17
Surrogate: 1,4-Difluo	robenzene		101.6		%		70-130	30-AUG-17
Surrogate: 4-Bromofl	luorobenzene		94.6		%		70-130	30-AUG-17

Workorder: L1982331

Report Date: 06-SEP-17

Client:	MCCLYMONT & RAK ENG. INC								
	111 ZENWAY BLVD. UNIT 4								
	VAUGHAN ON L4H 3H9								
Contact:	Jeremy Bobro								

Contact:

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

			Chain of Cust	tody (COC)	Analytical								þo	C Num	iber: '	15 -	6	119	920		
ALS		nenta	l	quest Form	68 9878		L196						}					f <u>1</u>			
Report To	Contact and company	r name below will app	ear on the final report		Report Format	/ Distribut		1		-016-2-0,		n in air Cù	· IAŤs wit	h your Al	M - Surcha	arges will	appiy				
Company:	MCCLYMONT & BAK				Select Report Format: PDFEXCELEDD (DIGITAL)				Regular [R] Standard TAT if received by 3 pm - business days - no surchard										arges apply		
Contact:	Jere	my	**	Quality Control (Quality Control (QC) Report with Report				4	day (P	4] []	1 Business day [E1]								
Phone:	675-01	60		Compare Re:	ults to Criteria on Report -	provide details below i	f box checked	ES D	3	day (P	3]	Ī	SCEP.	Sam	e Day,	Weeke	and or	Statutor	γ ()		
	Company address below wil	appear on the final a	report	Select Distributi	on: 📈 EMAIL	MAIL	FAX	PRIORITY (Business Days)	2	day (P	2] []	E I			holiday					
Street:	111 ZENW VAUGH	1014		Email 1 or Fax (60600) MCCrak. COM																	
City/Province:	VAUGH	I AN	- -	Email 2						For tests that can not be performed according to the service level selected, you will be contacted.											
Postal Code:				Email 3	· · · · · · · · · · · · · · · · · · ·		*	Analysis Request													
invoice To	Same as Report To	X YES	NO		Invoice Dis	stribution		Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below													
	Copy of Invoice with Report			Select Invoice D	istribution:		FAX FAX	t	<u> </u>				<u> </u>	Τ		$-\top$			1		
Company:	<u> </u>			Emai⊦1 or Fax										<u>+</u>	<u>├</u>		+		-1		
Contact:	<u></u> _			Email 2				1	컨												
	Project Inf	ormation			Dil and Gas Require	d Fields (client u	se)	1	Ganiyary						l Ì				Containers		
ALS Account # /	··			AFE/Cost Center:		IPO#			1.2										ntai		
Job #:	65168			Major/Minor Code;		Routing Code:		1	5												
PO/AFE:	67160			Requisitioner:					2								1		ar of		
LSD:			280	Location:		······		1	$ O^+$										Å.		
ALS Lab Work Order # (lab use only) L1982331			ALS Contact: Sampler:			1	274	er									Ĩ				
· · · · · · · ·							1	4		3											
ALS Sample # (lab use only)		-	n and/or Coordinates	Date Tim			Sample Type		\wp	Se											
		s description will	appear on the report)		(dd-mmm-yy)	(hh:mm)		╇──				_		+	+	+	+				
	BH	1			28 Angust	4:30	GW.	<u> </u>	\sim				_	<u> </u>	╞──┤		╧┿	\rightarrow			
		•						•							\square						
					· ·																
														T							
	,		<u> </u>	·	1									1							
		· · · ·									<u> </u>		+-	+-	+	\rightarrow	+	-+			
					<u> </u>							_		+	╞──┼	\rightarrow	\rightarrow				
ļ	·					· · · · ·	ļ							_	\vdash	-+	\rightarrow				
							1	1	<u> </u>								-		T		
·			· · · · · · · · · · · · · · · · · · ·		1		1	1	†						+			-+	+		
				·	+				<u> </u>		┝━─┼─╴		-		┼─┤	-+	-+	-+	+		
		· · · · ·		·				<u> </u>			CAMPI	FOR		<u></u>					<u> </u>		
Drinkin	g Water (DW) Samples ¹ (cli	ient use)	Special Instructions /	Specify Criteria to (elo	add on report by clicl ctronic COC only)	king on the drop-d	own list below	Froze	<u>.</u>	· · · ·		LE COM		_	vations	•		No	<u> </u>		
Are samples taker	n from a Regulated DW Syste	m?	<u> </u>				·	Ice P			LLI Ice Cube	a A			vations eal intac				=		
	5 🕅 NO								acks ng Initia			2	4 Cus	Jouy se	zar intal	JL	163				
-	uman drinking water use?											ERATUR	ES °C	<u> </u>		FINAL	.000	ER TEMPS	RATURES *C		
THES NO									INITIAL COOLER TEMPERATURES SC FIN								IAL COOLER TEMPERATURES *C				
	SHIPMENT RELE	ARE (aliant use)	<u> </u>	INITIAL SHIPMENT RECEPTION (ligb use only)						r—		< Piko		MÉNT				no a-bà			
Released by		:ASE (client use) ate:	Time:					Time Described her						BHIPMENT RECEPTION (lab use only) Date:							
REFER TO SACK BACK FOR ALL CONTIONS AND SAMPLING INCODUCTION				H 28/8/17					Time: Received by:					X 28/08/17 1645							

·.....

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.